

28 April 2022

Daniel Owe-Young Project Manager Hepburn Shire Council 76 Vincent Street Daylesford VIC 3460

Dear Daniel,

Re: Auditor Review of Risk Assessment Report Glenlyon Recreation Reserve, Suttons Lane, Glenlyon VIC

1. Introduction and Objective

Senversa Pty Ltd (Senversa) has been engaged by Hepburn Shire Council (the Council) for the services of Kristi Hanson, an EPA Victoria appointed environmental auditor, to review a risk assessment report prepared for the Glenlyon Recreational Reserve (Glenlyon Reserve) located at Suttons Lane, Glenlyon Victoria (the site).

The objective of this letter is to review and provide commentary on approach and conclusion of the risk assessment report prepared for the Glenlyon Reserve to evaluate the environmental and human health risk from historical clay target shooting activities. The risk assessment forms part of the clean up strategy detailed in the auditor verified Clean Up Plan (CUP) (see **Section 2** below).

As presented in Attachment A, the document that is subject of the review is:

• Kleinfelder (2022) *Risk Assessment Report – Glenlyon Recreation Reserve, Suttons Lane, Glenlyon Victoria 3461*, revision 1, version 3.0 dated 27 April 2022 (the risk assessment report).

The Council engaged Kleinfelder Australia Pty Ltd (Kleinfelder) as their environmental consultant for the site since 2020.

2. Background

The Glenlyon Reserve, approximately 21.7 hectare, is Crown Land managed by Department of Environment, Land, Water and Planning (DELWP) and is leased by Hepburn Shire Council. It is zoned Public Park and Recreation (PPRZ).

The reserve has been used for recreational activities since the late 1800s. The Daylesford Field and Game Club commenced clay target shooting activities at the site in the late 1970s and shooting ceased in 2020 under the Council's instruction, once it was identified that environmental pollution was identified.

An amended Clean Up Notice (CUN) no. 90011425 was issued for the site by EPA Victoria on 24 May 2021. This CUN required a CUP, verified by an EPA-appointed environmental auditor, to be prepared and submitted to EPA. This requirement was addressed with the following documents submitted to EPA on 11 October 2021:

- Kleinfelder (2021) *Clean Up Plan Glenlyon Recreational Reserve*, revision 3 dated 7 October 2021. This is hereafter referred to as 'the CUP'.
- Senversa (2021) Clean Up Plan Verification and Assessment Report, Glenlyon Recreation Reserve, Suttons Lane, Glenlyon VIC, ref: M18521_012_RPT_Rev0, dated 11 October 2021.

Subsequently on 20 January 2022, CUN no. 90011425 was revoked by EPA Victoria.

The CUP collated and reviewed environmental assessment data for the site and concluded that risks to on-site and off-site human and ecological receptors posed by site contamination associated with shooting activities are low and acceptable with the possible exception of human health risks to on-site recreational users due to direct contact exposure to benzo(a)pyrene toxic equivalent quotient (BaP TEQ) concentrations in shallow soils within the oval/racecourse and target launch areas of the site. Furthermore, additional sampling of surface water from Loddon River was proposed to confirm the CUP's conclusion that the surface water has not been impacted. Therefore, the Stage 2 of the clean up strategy detailed in Table 5.1 of the CUP comprised:

- an additional round of surface water sampling of the Loddon River, on-site soak and associated drain to the Loddon River and the unnamed tributary running through the southern portion of the site.
- a risk assessment to evaluate the potential impact to human health whereby a site-specific trigger level (SSTL) for BaP TEQ in soil is derived using published literature.

The CUP also required the risk assessment report to be reviewed by an environmental auditor (i.e., this letter).

The risk from clay target shooting activities that are to recommence at the site are managed through an Environmental Management Plan (EMP) for the ongoing use of the site for shooting activities. As this is not related to clean up activities or the CUP, this is excluded from the scope of this review letter. The auditor notes that an 'Environmental Management Plan, Daylesford Field and Game Association Inc., Glenlyon Recreation' dated 2021 prepared by Kleinfelder (the EMP) was referenced in the risk assessment report and is understood to have been provided to EPA for review. The EMP has not been sighted by the auditor.

3. Documents reviewed

The auditor was provided the following documents prepared by Kleinfelder for review:

- Sampling and Analysis Quality Plan Surface Water & Soil, Glenlyon Recreation Reserve, Suttons Lane, Glenlyon, VIC 3461, dated 13 December 2021.
- Risk Assessment Report Glenlyon Recreation Reserve, Suttons Lane, Glenlyon Victoria 3461, draft, version 1.0 dated 23 February 2022.
- Risk Assessment Report Glenlyon Recreation Reserve, Suttons Lane, Glenlyon Victoria 3461, final, version 2.0 dated 25 March 2022.
- Risk Assessment Report Glenlyon Recreation Reserve, Suttons Lane, Glenlyon Victoria 3461, revision 1, version 3.0 dated 27 April 2022. (Refer to **Attachment A**.)

The auditor reviewed and provided comments to Kleinfelder on the above reports for their consideration in the sampling works and the final version of the risk assessment report.

4. Auditor's Review

4.1 Surface Water Sampling Works

The risk assessment report discusses an additional surface water sampling event conducted in December 2021 at the site and adjacent Loddon River as part of the Stage 2 clean up strategy of the CUP.

The confirmatory surface water sampling was conducted to address an identified data gap in the CUP that only one surface water monitoring event had been conducted at a time when water was not flowing in the open spoon drain or unnamed tributary leading from the site to the Loddon River. Additional sampling to assess water quality that may be discharging from the site to the Loddon River was therefore warranted. The scope of work included:

- Surface water sampling at:
 - the Loddon River approximately 2 m up-stream and 2 m down-stream from the site's northern discharge point (SW01_1 and SW01_2).
 - the unnamed tributary on-site in the southern portion of the site (SW04) and the Loddon River down-stream of site's southern (unnamed tributary) discharge point (SW02).
 - the on-site soak (SW03).
 - the Loddon River (SW05) upstream of the site as a background sample.
- Laboratory analysis of surface water samples for metals (arsenic, cadmium, chromium, copper, lead, nickel and zinc) and PAHs.

The sampling locations are shown in Figure 4 of the risk assessment report and further details of the field investigations and results are discussed in Section 4.2 of the risk assessment report. The analytical results (including the previous 2020 sampling results discussed in the CUP) are summarised in Table 14 to 16 of the risk assessment report.

The surface water sampling results indicated that contaminants of concern associated with shooting activities (metals and PAHs) were below detection limits and/or below relevant health and ecological screening levels, with the exception of copper in location SW03 (the on-site soak). Copper was reported in SW03 at 0.005 mg/L, which exceeded the relevant objective for water-dependent ecosystems and species (95% species protection) of 0.0014 mg/L. However, the on-site 'soak' forms part of the surface water drainage system and is an artificial drainage feature. The water in the soak at the time of sampling was stagnant and not flowing and had likely been subject to evaporative concentration effects. The results from this location are therefore not representative of concentrations that would discharge from the site, i.e. discharging concentrations from the soak and/or other parts of the site would be expected to be further diluted due to rainfall and stormwater runoff. The auditor also notes that the concentration in the soak (0.005 mg/L), and which has been concluded to be naturally occurring in the previous CUP. On this basis, the reported copper concentration in the soak is not indicative of contamination. Copper concentrations in other sampled locations, including the Loddon River, were below relevant objectives.

Overall, the auditor considers that:

- The scope and methodology of the additional surface water sampling was adequate to address the requirement and intent of sampling, i.e. to assess surface water quality that may discharge from the site.
- The results of the surface water sampling did not identify contamination from shooting activities in surface water discharging to, or within, the Loddon River.
- A slightly elevated copper concentration reported in SW03 (the on-site soak) is consistent with shallow alluvial groundwater concentrations in which naturally elevated copper has been identified and does not represent contamination.

4.2 Soil Sampling

The risk assessment report discusses an additional soil sampling event conducted in December 2021 at the site and adjacent Loddon River as part of the Stage 2 clean up strategy of the CUP.

The objective of the additional soil sampling was to assess whether elevated PAH concentrations reported during a previous investigation by Beveridge Williams (in 2019) were repeatable, and whether similar concentrations were widespread near those locations or spatially variable over small distances. The additional soil data collected was used to supplement the contamination characterisation presented in the CUP and to revise the conceptual site model (CSM) prepared for the site (refer to Section 6 of the risk assessment report).

The scope of work included:

- Soil sampling at:
 - 18 targeted soil bores around the three existing soil sample locations (SS15, SS27 and SS29) from 2019 which reported the highest concentrations of BaP TEQ. Six soil bores were advanced around each of the three former locations in a circle approximately 1 m from the original bore locations.
 - Collection and analysis of a grab soil sample at the on-site holding basin (soak) (SW03).
 - Collection and analysis of and surface clay target fragments at the on-site holding basin (soak) (S1).
- Laboratory analysis of soil samples for PAHs.

It is noted that samples were collected at shallow depth (0 to 0.1 m) and at 0.3 to 0.5 m bgl, however only shallow soil samples were analysed.

The sampling locations are shown in Figure 6 of the risk assessment report and further details of the field investigations and results are discussed in Section 4.1 of the risk assessment report. The analytical results are summarised in Table 4D of the risk assessment report.

The soil PAH concentrations in the sampled areas were reported to be quite variable across the small spatial scales sampled around each former location, and similar to or lower than the previously reported concentration, i.e.:

- SS15:
 - Original BaP TEQ result: 120 mg/kg
 - Re-sample concentrations: 2.7 to 25 mg/kg
- SS27:
 - Original BaP TEQ result: 25 mg/kg
 - Re-sample concentrations: <0.5 to 15 mg/kg
- SS29:
 - Original BaP TEQ result: 48 mg/kg
 - Re-sample concentrations: <0.5 to 52 mg/kg

The BaP TEQ concentration in soil collected from the soak (SW03) was below laboratory limits of reporting (<0.5 mg/kg).

The BaP TEQ concentration in a sample of clay target fragments in the soak area (S1) was 150 mg/kg, i.e. similar to that reported in SS15 in 2019. This provides a line of evidence that concentrations in this range are likely indicative of whole clay target fragments, rather than soil particles.

4.3 Quality of Information

The auditor has reviewed the surface water and soil sampling methodology and data quality indicators to assess whether the works were conducted in accordance with relevant guidance including:

- Australian Standard (AS 4482.1) Guide to the investigation and sampling of the sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds (Standards Australia, 2005).
- Australian Standard (AS 4482.2) Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile substances (Standards Australia, 1999).
- National Environment Protection (Assessment of Site Contamination) Measure 1999 (National Environment Protection Council, 2013).
- Industrial Waste Resource Guidelines: Sampling and Analysis of Waters, Wastewaters, Soils and Wastes (EPA Publication IWRG701, June 2009).

The auditor's observations and comments in relation to the works conducted are summarised in **Table 4.1** below.

Component of Field Investigation	Auditor Comments – Surface Water	Auditor Comments - Soil
Sample locations / coverage	Samples were collected in the receiving surface water body (Loddon River) upstream and downstream of drainage locations from the site, in the on-site soak which represents accumulated stormwater runoff from the racecourse area of the site (where shooting related contamination has been identified) and in the unnamed tributary leading from the site to the Loddon River. These locations are appropriate for the investigation objective of assessing surface water quality that may be discharging from the site to the Loddon River.	Sample locations were targeted to areas where high PAH concentrations had been previously reported, consistent with the stated objectives.
Sample collection techniques	Collected using a telescopic water sampler approximately 0.3 to 0.4 m below water surface (where possible), or just below water surface for shallower waters (soak; SW03). Samples for metal analysis were filtered through a 0.45 µm filter. The techniques are considered appropriate for the purposes of the investigation.	investigation and the nature of the contaminants of
Sample equipment decontamination	used for every sample.	een samples using Decon90. Fresh nitrile gloves were procedures were consistent with relevant guidelines and
Field measurements and observations	Field water quality parameters (temperature, pH, redox potential, dissolved oxygen, electrical conductivity, colour, odour and turbidity) were recorded at each sample location. A calibration certificate for the water quality meter was provided in the report.	Soil descriptions were noted in the field and documented in bore logs for each location sampled. Photo-ionisation detector (PID) screening of soils was not conducted, however the auditor agrees that this is not required to meet the investigation objectives based on the non- to semi-volatile nature of the contaminants of interest (PAHs).

Table 4.1: Data Quality Review

Component of

Field Investigation

Auditor Comments – Surface Water

The diffyes ugation	
Field documentation	Field documentation including field notes, bore logs and chain of custody records were completed to a satisfactory standard to enable the auditor to interpret the data.
Sample handling, preservation and storage	Sample receipt advice from the laboratories indicated that samples were received in good condition, in appropriately preserved containers for relevant analytes.
Number and type of field quality	One field (intra-laboratory) duplicate, one secondary (inter-laboratory) duplicate and one rinsate blank sample were collected for both surface water and soil investigations.
control samples	The frequency and number of quality control samples is consistent with relevant guidance (AS4482.1, ASC NEMP) and appropriate for the investigation.
Selection of chemical analytes	The selected analytes (metals and PAHs in surface water and PAHs in soil) were those which had been identified in the CUP to require further delineation and investigation and are considered appropriate.
Laboratory quality assurance and quality control (QA/QC) results	Kleinfelder discusses the laboratory QA/QC program and results in Section 5.1 of the risk assessment report. While some deviations from acceptance criteria were noted (primarily insufficient frequency of some QC samples by the secondary laboratory, and holding time non-compliance for some repeat analysis requests), the majority of laboratory QC results were within acceptance criteria and indicated that the reported data were representative of concentrations within the samples received.
Field quality control results	While some relative percent differences (RPDs) exceeded adopted acceptance criteria for PAHs in soil, this was attributed by Kleinfelder to soil heterogeneity and is considered typical for heterogeneous fill soil matrices with clay target inclusions that will vary in abundance over short distances. Sufficient sampling and repeat analysis have been conducted to characterise this heterogeneity, thus the RPD non-conformances do not affect the useability of the data.

Auditor Comments - Soil

Overall, the auditor considers that the sampling undertaken was sufficient for the stated objectives of the investigation, and the quality and reliability of information generated from the investigations were sufficient for the purposes of the assessment.

4.4 Risk Assessment

In order to assess the risk posed by elevated PAH concentrations at the site (as indicated by BaP TEQ), Kleinfelder derived site-specific target levels (SSTLs), which considered both the anticipated low bioavailability of BaP TEQ contamination at the site, and the frequency and nature of site use.

The risk assessment methodology was conducted in accordance with the National Environment Protection (Assessment of Site Contamination) Amendment Measure as amended in 2013 (the NEPM).

Table 4.2 summarises the auditor's review of the key aspects of the risk assessment.

Aspects of Risk Assessment	Assessor's Approach	Auditor's Comments
Overall approach	 Kleinfelder utilised the HIL calculation spreadsheet published in the ASC NEPM toolbox to derive site-specific HILs for BaP TEQ. The derivation used the same default assumptions as adopted in the ASC NEPM for recreational land use, with the exception of: Oral and dermal bioavailability / bioaccessibility of BaP TEQ. Exposure patterns / frequency by recreational users of the site. 	The approach is considered appropriate and consistent with relevant ASC NEPM guidance, which states that PAHs in soil have been demonstrated in to be much lower than 100%, and that a site-specific assessment of bioavailability can be undertaken where required.
Site-specific oral and dermal bioaccessibility	 Kleinfelder conducted a literature review which identified that: PAHs in new and weathered clay targets are tightly bound in targets, and when present in soil are associated with clay target fragments rather than soil/sediment particles. Benzo(a)pyrene relative oral bioavailability in soils contaminated with clay targets has been measured to range from 8 to 14%, and that these values can be conservatively applied to other carcinogenic PAHs in clay targets. Kleinfelder adopted the maximum value in this range to apply to BaP TEQ. Dermal adsorption fractions for PAHs in clay target impacted soils ranged from 0 to 3.6%. The mean values across all compounds ranged from 0.28% to 1.4% and did not differ between compounds. Kleinfelder selected a value of 1.3% (which was the maximum reported for benzo(a)pyrene) to apply to BaP TEQ. 	The adopted bioaccessibility values are considered appropriate and consistent with the cited literature.

Table 4.2: Summary of Auditor's Review of Risk Assessment

Aspects of Risk Assessor's Approach Assessment

Site-specific exposure parameters	Kleinfelder considered that reduction of exposure frequency from the NEPM default of 365 days/year to 2 days/week (104 days per year) was likely to be protective of receptors at the site, as it was considered highly unlikely that users of the site would access the PAH impacted area every day of the year for 2 hours per day, for multiple years in a row (as is assumed in derivation of the NEPM HIL).	While the auditor agrees that it is unlikely any individual receptor would access PAH-impacted areas of the site more than 2 days per week, the possibility of some individuals utilising the oval / racetrack every day (e.g. for dog walking or recreational walking) cannot be entirely ruled out. However, the auditor also notes that the 95% upper confidence limit (UCL) on the mean concentration across the PAH-impacted area of the site is below the derived SSTL for 365 day/year exposure – thus risks to recreational users are considered low and acceptable even where the site is visited every day. The auditor also notes that the HIL for BaP TEQ applies age dependant adjustment factors (ADAFs) for early life exposure to these compounds, with the heaviest weighting applied to exposure during the first 2 years. Thus where children under 2 years of age have no, or negligible exposure to impacted soils, the SSTL would increase substantially (e.g. if very young children under 2 did not access the site, but children from aged 2 and up were present in the contaminated area every day of the year, the SSTL would be 60 mg/kg, which is the same as the SSTL derived by Kleinfelder for a scenario where children and adults frequent the site from birth two times per week). Overall, while some individuals may be present more
		than 2 times per week, these more frequent exposures would occur only for older children and/or adults, which would result in a similar SSTL to that derived by Kleinfelder for 2 days/week exposure by all age groups.
Derived SSTLs	Kleinfelder derived the following SSTLs for BaP	The SSTLs were derived correctly and reflect the
	 TEQ: Based on reduced oral and dermal bioavailability (14% and 1.3% respectively): 20 mg/kg where receptors are exposed in early-life / from birth. 50 mg/kg where receptors are exposed only as adults. Based on reduced oral and dermal bioavailability and reduced exposure frequency (2 days / week): 60 mg/kg where receptors are exposed in early-life / from birth. 200 mg/kg where receptors are exposed only as adults. 	adopted assumptions. As noted above, the 95% UCL BaP TEQ concentration in surface soil at the site (10.6 mg/kg) is below even the lowest of the derived SSTLs (20 mg/kg). BaP TEQ concentrations in only 3 locations across the racecourse / oval exceeded this SSTL, and these elevated results likely reflect residual clay target fragments within the soil matrix. It is noted that Kleinfelder conducted a statistical comparison to the higher SSTL of 60 mg/kg, and also concluded that site concentrations were below this concentration. However, the auditor considers that average concentrations to which receptors are likely to be exposed at the site are also below the lower SSTL of 20 mg/kg, and that risks to receptors utilising the site are low and acceptable.

Auditor's Comments

In summary, the auditor considers the risk assessment and SSTL derivation was conducted in accordance with relevant guidelines and the assumptions and parameters used in deriving the SSTL were appropriate and/or suitable conservative. The auditor also notes that the most conservative SSTL of 20 mg/kg BaP TEQ, which allows for individuals to access the PAH-impacted parts of the site 365 days per year from birth, is not exceeded by the 95% UCL BaP TEQ concentration in soils across the racetrack / oval portion of the site. While some isolated soil samples had reported concentrations exceeding this value, these higher concentrations likely reflect residual clay target fragments within the soil matrix, and have very low bioavailability (and hence low toxicity).

Overall, the auditor concurs with the conclusions of the risk assessment that the health risk posed by contamination from the historical clay targeting shooting activities conducted at the site is low and acceptable.

5. Implication for the Clean Up Strategy

The risk assessment concluded that "*no further risk assessment, remedial actions or further management controls are required for the site based on its going use as a public recreational reserve*" (page 32). Furthermore, the current short-term management measures whereby selected portion of the site has temporary fencing with signage installed to prevent access to the areas of contamination concern (i.e., Stage 1 of the clean up strategy of the CUP) are also concluded to be no longer required. However, if clay shooting activities are to resume at the site, the risk mitigation measures stipulated in the EMP should be employed.

Overall, based on the field investigations and risk assessment works conducted at the site to date, the auditor concurs with the conclusions of the risk assessment. This means that Stage 3 (triggers and contingencies) and Stage 4 (remediation) of the clean up strategy of the EPA-approved CUP for managing contamination associated with historical shooting activities are no longer required for implementation.

6. Closure

If you have any comments or questions about this letter, please do not hesitate to contact the undersigned.

Yours sincerely,

Kristi Hanson Environmental Auditor (appointed pursuant to the Environment Protection Act 2017)

Enclosure: Attachment A: Risk Assessment Report – Glenlyon Recreation Reserve, revision 1, version 3.0 dated 27 April 2022

Limitations: Serversa has prepared this document for use only by Hepburn Shire Council for the specific purpose described in its proposal, which is subject to limitations. Matters of possible interest to third parties may not have been specifically addressed for the purposes of preparing this document and Serversa's use of professional judgement for the purposes of the work means that matters may have existed that would have been assessed differently on behalf of third parties.

In drawing conclusions and conducting the review, the environmental auditor used reasonable care to avoid reliance upon data and information that may be inaccurate but has not independently verified all information on which it has relied. The environmental auditor's conclusions presented in this letter are therefore limited by and rely upon the information made available to her and on her own observations as part of the assessment process. These conclusions may be different if the information upon which they are based is determined to be false, inaccurate or incomplete.

Attachment A: Risk Assessment Report – Glenlyon Recreation Reserve, revision 1, version 3.0 dated 27 April 2022

Risk Assessment Report – Glenlyon Recreation Reserve

Suttons Lane, Glenlyon, Victoria 3461

20220348.001A 27 April 2022

Level 1, 95 Coventry Street, South Melbourne, VIC 3205 Phone: +61 3 9907 6000

Risk Assessment Report – Glenlyon Recreation Reserve

Suttons Lane, Glenlyon, Victoria 3461

Kleinfelder Project: 20220348.001A

Kleinfelder Document: MLB22R136613

Copyright 2022 Kleinfelder All Rights Reserved

Prepared for:

Daniel Owe-Young Hepburn Shire Council PO Box 21 Daylesford, VIC 3460

Prepared by:

Kleinfelder Australia Pty Ltd

Level 1, 95 Coventry Street, South Melbourne, VIC 3205 Phone: +61 3 9907 6000 ABN: 23 146 082 500

Doo	umont	Control	
DOC	ument	Control	

Version	Description	Date
1.0	Draft	23 February 2022
2.0	Final	25 March 2022
3.0	Revision 1	27 April 2022
Prepared/Author	Reviewed/ITR	Endorsed/QR
Jui	hurth	elle aniel
Jasper Wisman	Jeremy McDonnell	Kevin Bourke

Only Hepburn Shire Council, its designated representatives or relevant statutory authorities may use this document and only for the specific purpose for which this submission was prepared. It should not be otherwise referenced without permission.

TABLE OF CONTENTS

1	IN	TROD	UCTION	1
2	OE	BJECT	IVE	2
	2.1	Ris	K ASSESSMENT APPROACH	2
3	BA	ACKGF	ROUND	3
	3.1 3.2		e Description e Uses/Users	
	3.2 3.2	2.1 2.2	Site Uses Site Users	
	3.3 3.4 3.5 3.6	Tof Geo	RROUNDING LAND USE POGRAPHY AND HYDROLOGY DLOGY EVIOUS SOIL / SURFACE WATER SAMPLING	4 5
	3.6 3.6 3.6 3.6	6.2 6.3	Soil Groundwater Surface Water Existing Risk Mitigation Strategies	8 9
4	FU	JTHEF	SOIL AND SURFACE WATER INVESTIGATION	11
	4.1	Soi	۲	
	4.1 4.1 4.1 4.1 4.1	1.2 1.3 1.4	Objective Scope of Work and Methodology Adopted Soil Criteria Results Discussion	11 13 13
	4.2	SUF	RFACE WATER	14
	4.2 4.2 4.2 4.2 4.2	2.2 2.3 2.4	Objective Scope of Work and Methodology Adopted Surface Water Criteria Surface Water Results Discussion	14 15 16
5	QL	JALIT	Y ASSURANCE/QUALITY CONTROL	17
	5.1	LAE	BORATORY QA/QC PROGRAM	17
	5.1 5.1 5.1	1.2	Quality Control Samples Holding Time Compliance Laboratory Limits of Reporting	17
	5.2	FIE	LD QA/QC PROGRAM	18
	5.2 5.2		Relative Percentage Difference Rinsate and Trip Blanks	
	5.3	QA	/QC CONCLUSIONS	19
6	CC		PTUAL SITE MODEL	
	6.1		ALUATION OF EXPOSURE PATHWAYS	
	6.1 6.1		Source	
	6.2 6.3		т ГНWAY CEPTORS	21

7	EXPO	SURE RISK ASSESSMENT	24
	7.1 B	ACKGROUND	24
	7.2 L	ITERATURE REVIEW	24
	7.3 D	PERIVATION OF SSTL FOR BAP TEQ	25
	7.3.1	Oral and Dermal Bioavailability	
	7.3.2	Receptors of Concern	
	7.3.3	Exposure Frequency	26
	7.4 S	TATISTICAL EVALUATION OF DATASET AND RISK CHARECTERISATION	
	7.5 T	RIGGERS AND CONTINGENCIES	
	7.6 A	SSUMPTIONS AND LIMITATIONS	
8	CONC	CLUSION	
9		ATIONS	33
0			

TABLES (IN TEXT)

Table 3.1:	Site Details	3
Table 3.2:	Surrounding Land Use	4
Table 4.1:	Soil –Scope of Works	12
	Surface Water – Scope of Works	
Table 5.1:	QA/QC duplicates	17
Table 6.1:	Clay Target Shooting S-P-R Linkages	23
Table 7.1:	Statistical Evaluation of the Dataset – BaP TEQ	30

FIGURES (IN TEXT)

<u> </u>	Map showing the Site location, regional geology (1:50,000 GSV interpretation), regional onitoring wells, elevation and surface water features	6
Figure 6.1:	Interpolated BaP TEQ concentrations, with estimated 50 to 90 metre fall zones from indicated	
launch areas.	21	
Figure 7.1:	Walking tracks at the Site (yellow are the walking trails; red is the fence line)	28
Figure 7.2:	Site specific SSTLs for BaP TEQ (early-life)	29
Figure 7.3:	Site specific SSTLs for BaP TEQ (adult)	.29

FIGURES

- Figure 1: Soil Sample Locations
- Figure 2:Soil Analytical Results Lead
- Figure 3 Soil Analytical Results B(a)P TEQ
- Figure 4: Surface Water Sampling Locations
- Figure 5: Monitoring Well Locations
- Figure 6: Soil Analytical Results B(a)P TEQ

TABLES

- Table 1: Soil Analytical Data BTEXN, TRH
- Table 2: Soil Analytical Data Inorganics
- Table 3:
 Soil Analytical Data Metals
- Table 3A: Soil Analytical Data Metals
- Table 3B:
 Soil Analytical Data Metals
- Table 3C:Soil Analytical Data Metals

Table 4: Soil Analytical Data - PAHs Table 4A: Soil Analytical Data - PAHs Table 4B: Soil Analytical Data - PAHs Table 4C: Soil Analytical Data - PAHs Table 4D: Soil Analytical Data – PAHs Table 5: Soil Analytical Data - PCBs Table 6: Soil Analytical Data - Pesticides Table 7: Soil Analytical Data - Phenols Table 8: Soil Analytical Data - VOCs Table 9: Quality Control Sample Analysis - Metals Table 9A: **Quality Control Sample Analysis - Metals** Table 10: Quality Control Sample Analysis - PAHs Table 10A: Quality Control Sample Analysis - PAHs Table 10B: Quality Control Sample Analysis - PAHs Table 11: Quality Control Sample Analysis - BTEXN, TRH Table 12: **Quality Control Sample Analysis - Metals** Table 13: Quality Control Sample Analysis - PAHs Table 13A: Quality Control Sample Analysis - PAHs Table 14: Surface Water Analytical Data - Inorganics Table 15: Surface Water Analytical Data - Metals Table 16: Surface Water Analytical Data - PAHs Table 17: Quality Control Sample Analysis - BTEXN, TRH Table 18: **Quality Control Sample Analysis - Inorganics** Table 19: **Quality Control Sample Analysis - Metals** Table 20: **Quality Control Sample Analysis - PAHs**

APPENDICES

Appendix A: Field Logs Appendix B: Laboratory Reports Appendix C1: NEPM HIL C Calculation Spreadsheet (365 days/year) Appendix C2: NEPM HIL C Calculation Spreadsheet (104 days/year)

1 INTRODUCTION

Kleinfelder Australia Pty Ltd (Kleinfelder) was engaged by Hepburn Shire Council (Council) to prepare a risk assessment report for the Glenlyon Recreation Reserve, Suttons Lane Glenlyon, Victoria (hereafter referred to as the Site).

This risk assessment is a response to the amended clean up notice (CUN) – Notice ID 90011425, issued to the Council on 24 May 2021 by the Environment Protection Authority (EPA) Victoria and follows the clean-up plan (CUP) previously prepared by Kleinfelder¹. This report includes the findings of additional soil and surface water data collected for the Site to assess the potential risk to the environment and human health in relation to the Site's historical use for clay target shooting.

¹ Kleinfelder 2021, Clean-Up Plan – Glenlyon Recreation Reserve

2 OBJECTIVE

The objectives of the risk assessment were to:

- Assess the potential risks to ecosystems and human health of recreational users associated with the Site's historical use for clay target shooting.
- Evaluate the potential impacts to human health associated with polycyclic aromatic hydrocarbon (PAH) compounds identified in shallow soils and to refine the site-specific target level (SSTL) based on the ongoing recreational use of the Site.

2.1 RISK ASSESSMENT APPROACH

The risk assessment methodology was conducted in accordance with the Australian National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013, referred to hereafter as the NEPM. The specific provisions within the NEPM are:

- Guideline on Investigation Levels for Soil and Groundwater, Schedule B1
- Guideline on Site-Specific Health Risk Assessment Methodology, Schedule B4
- Guideline on Derivation Health-Based Investigation Levels, Schedule B7
- Additional international resources have been used as appropriate, which include the following:
 - Interstate Technology Regulatory Council, 2005. Environmental management at operating outdoor small arms firing ranges.
 - Lobb, A., 2006. Potential for PAH contamination from clay target debris at shooting sites: Review of literature on occurrence of site contamination from clay targets. Report U06/81.
 - Baer, K.N. et al., 1995. Toxicity evaluation of trap and skeet shooting targets to aquatic test species. Ecotoxicology, 4, 385-392.
 - Gonzalez, G.R., 2003. Contaminants at a shooting range: Toxicological and nutritional significance to birds and mammals. Masters Thesis, Virginia Polytechnic Institute and State University.
 - Forsberg, N.D., et al., 2021. Oral and dermal bioavailability studies of polycyclic aromatic hydrocarbons from soils containing weathered fragments of clay shooting targets. Environmental Science and Technology, 55, 6897-6906.

The methodology adopted to develop the SSTL is detailed further in **Section 7** below. Data used in this risk assessment is taken from the previous environmental investigations completed at the Site between 2019 and July 2021, complemented with further soil and surface water data collected by Kleinfelder in December 2021.

3 BACKGROUND

3.1 SITE DESCRIPTION

Site details are summarised in Table 3.1 below.

Table 3.1:Site Details

Item	Details
Site Address	Suttons Lane, Glenlyon VIC 3461
Standard Parcel Identifier	5~48\PP5324
Site Use	Local recreation reserve
Site Area	21 hectares (approximately)
Site Zoning	Public Park and Recreation (PPRZ)
Local Council	Hepburn Shire
Site Features	An oval shaped racecourse circling an area of approximately 8.1 hectares encompassing a sports oval (the Des Leonard Oval), surrounded by a sports pavilion, toilet block, storage shed, barbeque and children's playground areas, camping and horse-riding/equestrian facilities.

3.2 SITE USES/USERS

3.2.1 Site Uses

The following Site uses include:

- Clay target shooting:
 - Commenced on-site circa 1979 and was generally held on the first Saturday of each month
 - Council requested that the Daylesford Field and Game Association Inc halt this activity in 2020 due to
 potential human health risks resulting from clay target fragments (PAH compounds and residual lead
 shot)
- Equestrian (including dressage, racing/training circuit, cross country and horse trial events) held within the main fenced area of the oval/racecourse area
- Recreational park, including:
 - Sporting events (e.g. cricket)
 - Dog walking
 - General exercise
 - Horse training
 - Push bikes
 - BBQ and children's playground areas to the south of the oval/racecourse area
 - Camping
 - Public toilet facilities
- Open space for public events held intermittently throughout the year

3.2.2 Site Users

Based on the information provided by Council, it is understood that the Site users include:

- Clay target shooters:
 - Based on the information provided, it is proposed that this activity will recommence again once per month on a scheduled day (Sunday)
 - Public access is restricted during shooting events, with spectators observing from the boundary fences surrounding the oval/racecourse area
- Horse riders:
 - Public access is restricted during events, with spectators observing from the boundary fences surrounding the oval/racecourse area
- General recreational users of all ages (including campers, dog walkers, exercise enthusiasts, people who play sport, bike riders)

Further information regarding the expected exposure frequencies of Site users is included in **Section 7.3.3** below.

3.3 SURROUNDING LAND USE

The surrounding land use is summarised in **Table 3.2** below.

Table 3.2:Surrounding Land Use

Direction	Description
North	Agricultural land
East	Agricultural land
South	Agricultural land, public conservation areas, residential properties, Loddon River and the Glenlyon Community Dam
West	Public conservation areas, residential properties, Loddon River and Glenlyon township

3.4 TOPOGRAPHY AND HYDROLOGY

Glenlyon is located in the Victorian West Central Highlands where the local elevation ranges from approximately 540 mAHD² at the Site to 685 mAHD, approximately 1.7 km to the Site's east. Glenlyon is situated at an elevation of approximately 575 mAHD, indicating that the Site is at a topographical low point.

The Loddon River, which forms the Site's southwestern boundary is the predominant surface water feature in the area. There are multiple unnamed tributaries flowing into the Loddon River in the regional area, including a creek that traverses the Site's southern boundary.

The northern boundary of the Site slopes down towards the middle (i.e. the drainage area), by approximately 20 m, and the surface elevation increases between the drainage area and the southern boundary of the Site by approximately 5 m toward the Loddon River.

The racecourse interior is grassed with a sparse tree cover, whereas the exterior areas are grassed with denser tree cover. Surface water overland flow within the racecourse area is controlled by an earthen spoon drain network that channels the water into a shallow water retention pond, located near the western boundary on the racecourse interior, from which overflowing water is discharged to the Loddon River through an earthen spoon drain.

² mAHD – metres relative to the Australian Height Datum

3.5 GEOLOGY

The geological and hydrogeological review identified that the Site is located in a reasonably complex area with extensive basalt and partially mineralised siltstone located to the north and west, and east and south, respectively. The Site itself occupies an area of recent alluvium/colluvium accumulation on the eastern bank of the Loddon River.

The regional surface geology³ (refer to **Figure 3.1** below) is dominated by the folded and faulted Early to Middle Ordovician⁴ Castlemaine Formation made up of thickly bedded marine sandstones, mudstones and shales, with rarer conglomerates to the Site's south and east. Overlying the Castlemaine Formation are Late Miocene to Holocene⁵ Newer Volcanic Group basalts to the west and north, of which there are five known basalt eruption points within 2.7 km of the Site. The fluvial Eocene to Pliocene⁶ Calivil Formation clays, silts, sands and conglomerates underlie the basalts and as these sediments are not known at high elevations it is probable that they were deposited by the ancient Loddon River, prior to basalt filling the river valley.

The Site surface geology is mapped as Pleistocene to Holocene⁷ unconsolidated terrace/alluvial gravels, sands and silts, which based on the geological map overlie the Castlemaine Formation. These sediments are likely to comprise alluvium, derived from the Loddon River and colluvium derived from the higher elevation Castlemaine Formation and Newer Volcanic Group rocks surrounding the Site. It is considered likely that the alluvial sediments were deposited when the Loddon River was temporarily dammed on multiple occasions by basalt. The Daylesford-Glenlyon Lead beneath the basalt marks the approximate palaeo-Loddon River channel.

Deep leads formed when basalt flows filled river valleys, hence the leads are essentially palaeo-alluvial deposits, some of which contain gold. Primary gold mineralisation is associated with regional hydrothermal alteration of the Ordovician sediments that resulted in quartz veining with minor sulfide (pyrite, arsenopyrite, chalcopyrite, sphalerite and galena) and iron carbonate⁸ precipitation. While Glenlyon is not within a historical gold producing area, the Ordovician rocks up-topographic gradient from the Site are described "*micaceous sandstones intersected by quartz veins*"⁹, hence the rocks have been hydrothermally altered and associated sulfides are to be expected.

³ From gsv.vic.gov.au/sd_weave

⁴ Early to middle Ordovician marine sediments deposited between 485 and 460 million years before present.

⁵ Late Miocene to Holocene basalts were erupted between 8.5 million and 5,000 years before present.

⁶ Eocene to Pliocene fluvial sediments deposited between approximately 50 and 5 million years before present.

⁷ Pleistocene to Holocene terrace sediments deposited between 2.5 million years and the present.

⁸ Phillips, G.N., et al. 2003. Gold. In Birch, W.D. (editor) Geology of Victoria. Pp. 377-433.

⁹ Geological Survey of Victoria., undated. Quarter Sheet 10 NW. 40 chains to 1 inch, geological map. Department of Mines, Victoria.

Bore logs¹⁰ for wells within Glenlyon suggest the basalt is up to 60 metres thick (WRK009922) and thins toward the margins, to less than 20 metres thick. Bore 65296, to the Site's west, across the Loddon River intersected 12 m of basalt, cemented wash (a general term for cemented gravel sediment derived from nearby hills) to 22 metres below ground level (mbgl) and sandstone to 24 mbgl. Located near the Site's western boundary the 260 m deep Jet Bore log (Bore 65272, the Site mineral water well) indicates that clay and sandstone are present to 20 metres depth beneath which are sandstones and shales with quartz intervals, supporting the earlier observation that hydrothermal alteration is prevalent in the area.

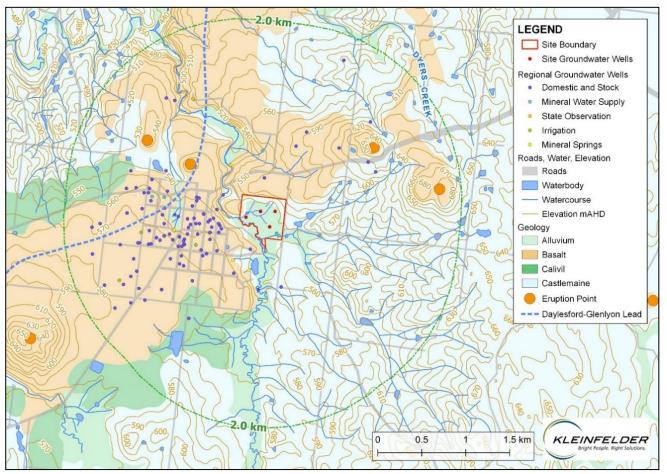


Figure 3.1: Map showing the Site location, regional geology (1:50,000 GSV interpretation), regional groundwater monitoring wells, elevation and surface water features

3.6 PREVIOUS SOIL / SURFACE WATER SAMPLING

A preliminary soil contamination assessment (PSCA), which included a desktop review, site inspection and soil contamination assessment was previously undertaken by Beveridge Williams¹¹. The PSCA concluded that the Site contained lead and PAH impacts from the recreational shooting activities that may pose a potential health risk to Site users. The PSCA recommended limiting access to the Site to prevent health and environmental impacts from the identified contamination and further detailed soil and groundwater assessment for ongoing operation and management of the Site.

The EPA issued a CUN (90010886) for the Site on 31 January 2020, which required the Council to address imminent risks to human health and environment from the clay target shooting activity at the Site and undertake a detailed site investigation (DSI) to identify the level and extent of contamination in soil and groundwater on and from the Site. Kleinfelder¹² was engaged to undertake a DSI to satisfy the requirements of the CUN 90010886.

¹⁰ Available from bom.gov.au

¹¹ Beveridge Williams, 2019. Preliminary Soil Contamination Assessment, Glenlyon Reserve, Suttons Lane, Glenlyon ¹² Kleinfelder, 2020. Detailed Site Investigation, Glenlyon Recreation Reserve, Suttons Lane, Glenlyon, Victoria

Details of the previous investigations undertaken at the Site in relation to soil, groundwater and surface water are included in the following sections.

3.6.1 Soil

Kleinfelder completed a DSI for the Site that included advancing 55 soil bores in an unbiased grid formation in the target shooting shot and clay-bitumen target fall zones. Beveridge and Williams (2019) had previously collected 30 surface soil samples targeting the six target launch areas and centrally where elevated lead concentrations were previously identified during X-ray fluorescence (XRF) preliminary screening. The previous sample locations are shown on **Figure 1** (attached).

The screening criteria applicable as per the NEPM has been adopted to assess the Site for the ongoing land use scenario as a recreation reserve includes the following:

- Ecological investigation/screening level (EIL/ESL) for a public open space.
- Health investigation/screening levels HIL/HSL C for public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

Of the 85 surface samples analysed from within the racecourse/oval grid, the following exceedances of the Tier 1 HIL C were reported:

- Lead two surface samples collected by Beveridge and Williams (SS28 and SS29)
- Benzo(a)pyrene toxicity equivalent quotient (BaP TEQ) for the following samples:
 - Eight surface samples collected by Beveridge and Williams, including:
 - o SS01
 - o SS03
 - o SS04
 - o SS11
 - o SS13
 - o SS15
 - o SS17
 - o **SS27**
 - o **SS28**
 - o SS29
 - Two surface samples collected by Kleinfelder (OG26_0.1 and OG42_0.1)
- Total PAH one surface sample collected by Beveridge and Williams (SS15)

Based on the proportion of Beveridge Williams samples exceeding HIL C being greater than the Kleinfelder collected samples, it was considered that target fragments are likely to have been included within the Beveridge Williams samples especially as the sample locations targeted the target launch areas.

In order to verify these elevated results reported by Beveridge Williams dataset, Kleinfelder completed further soil sampling at select locations across the Site. Further details of the additional soil sampling completed is included in **Section 4.1** below.

Samples underlying the surface samples, which reported the highest concentrations of lead and PAH compounds were analysed and included the following: OG11_0.5, OG13_0.7, OG14_0.5, OG15_0.7, OG16_0.4, OG20_0.4, OG24_0.5, OG25_1.0, OG26_0.4, OG36_0.6, OG42_0.4, OG49_0.5 and OG53_0.5. The concentrations of lead reported for these samples ranged from 11 – 50 mg/kg, with concentrations of PAH compounds all less than the laboratory limit of reporting (LOR). Based on the concentrations reported in the samples analysed from below the surface samples (i.e. those samples analysed that were collected from depths of 0.4, 0.5, 0.7 and 1.0 mbgl), no evidence of lead and BaP migration through the soil profile was observed.

Kleinfelder also completed soil sampling and analysis in other areas of the Site, which included the barbecue area (samples BS01 to BS11), children's playground (samples PG01 to PG05), camping area (samples CG01 to CG12), mounting yard area (samples MY01 to MY05), pavilion (samples PV01 to PV10), eastern and south-eastern fence lines (samples FB01 to FB05) and neighbouring properties to the north, east and west of the Site (SB01 to SB14). The concentrations of PAH and lead were all below the adopted human health and ecological criteria, which demonstrates that the contamination associated with shooting activities at the Site is confined to the oval/racecourse area, with no exceedances reported in other areas of the Site where soil sampling was completed.

Refer to **Figures 2** and **3** attached showing the sample locations where the concentrations exceeded HIL C. The results from the previous soil assessments completed at the Site are provided in **Tables 1** to **8** (attached).

A statistical evaluation of the lead. BaP TEQ, total PAH and BaP surface data was completed to assess whether the results met the criteria outlined in Schedule B1 of the NEPM. The soil samples collected as part of the wider investigation across other areas of the Site were not included in this statistical analysis.

Following statistical evaluation of the dataset it was determined that:

- The concentrations of lead in soil do not exceed the Tier 1 NEPM HIL C or EIL
- The concentration of BaP TEQ in seven soil samples exceed 250% of the Tier 1 NEPM HIL C
- The concentration of PAH in one soil sample exceed 250% of the Tier 1 NEPM HIL C

3.6.2 Groundwater

Four groundwater monitoring wells were installed into alluvium/colluvium adjacent to (MW01) and within (MW02 to MW04) the racecourse area (refer to **Figure 5** attached showing the well locations. During the first groundwater monitoring event (GME) completed at the Site in April 2020, dissolved lead was reported below the laboratory LOR in all samples; however concentrations of dissolved metals (including copper, nickel and zinc) exceeded the water dependent ecosystems and species (WDES) screening criteria¹³. Dissolved nickel concentrations were also reported above the drinking water screening criteria¹⁴. Very low concentrations of PAH compounds (fluorene and phenanthrene) were reported at or slightly above the laboratory LOR, however these compounds are not known to be carcinogenic and therefore do not exceed the screening criteria.

In a sample collected from the Site's mineral water well, all dissolved metals (associated with the anthropogenic Site use and metals identified in groundwater) were below the laboratory LOR and hence below the screening criteria. This result is consistent with the mineral water source being significantly below the surficial alluvial aquifer.

A second GME was completed on 27 July 2021 for the four groundwater monitoring wells previously installed at the Site (MW01, MW02, MW03 and MW04). Reported dissolved metals concentrations were generally consistent with the April 2020 GME. Copper, nickel and zinc concentrations exceeded the adopted criteria applicable to WDES in all groundwater samples analysed and drinking water screening criteria in MW03. Nickel concentrations reported in groundwater from MW02 and MW04 in April 2020 exceeded both the adopted water dependent ecosystems and species (95% freshwater) screening criteria and drinking water screening criteria.

A concentration of dissolved lead was reported at MW04 slightly above the laboratory LOR but was less than the applicable criteria. The dissolved lead concentration at MW04 indicates that there is the potential for leaching to have occurred from the overlying surface soils, however, this appears to be limited and has not resulted in groundwater concentrations being reported above the relevant objectives for applicable environmental values. It is considered that the higher lead concentration is likely associated with the higher water table, which was observed during the second GME, where the groundwater is likely to have come into contact with shallower soils comprising higher lead concentrations.

 ¹³ Australian and New Zealand Environment and Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand, 2000. Australian and New Zealand guidelines for fresh and marine water quality.
 ¹⁴ National Health and Medical Research Council, 2011. Australian drinking water guidelines 6. Version 3.5. Updated August 2018.

All PAH compounds were reported below the laboratory LOR. Nutrients, cations/anions, TDS and TSS concentrations were reported below the adopted screening criteria (where relevant) in all groundwater samples, consistent with the April 2020 GME results.

Kleinfelder previously completed a desktop hydrogeological review and develop a hydrogeological conceptual site model (HCSM) for the Site to further understand the relationship between the Site and regional aquifers, with particular reference to the elevated dissolved copper, nickel and zinc concentrations within the Site groundwater¹⁵. Based on the findings of the desktop hydrogeological review and HCSM, Kleinfelder concluded that the elevated concentrations of dissolved metals (including copper, nickel and zinc) reported in groundwater were considered to be background and not associated with historical clay target shooting activities at the Site.

3.6.3 Surface Water

Two watercourses are present in the southern area of the Site, including the Loddon River running along the southwestern boundary, and an unnamed tributary running through the camping area near the southern reserve boundary. The reserve interior also contains an internal surface water drainage, which includes a holding basin (soak) located near the western boundary, which discharges to the Loddon River. The soak was dry at the time of the Kleinfelder DSI.

The DSI investigation strategy relied on a contamination model where clay target shooting produced large hotspot areas where COPC may be elevated. Low-lying Site areas within the oval/racecourse were not specifically targeted during this investigation, however, sample locations OG46_0.1 and OG47_0.1 were located in proximity to the drainage areas within the racecourse area. One soil sample was also collected from the margin of the soak located at the western boundary (OG27_0.1) where water accumulates prior to discharge to the Loddon River. The concentrations of lead and PAH were all below the laboratory LOR and or applicable criteria at these soil sample locations, supporting the observation that transport within on-Site surface water is unlikely.

In addition, Auditor verification samples were collected targeting a drainage line leading into the soak (sample AV01) and the soak located at the western boundary, which was dry at the time (sample AV02). The concentrations of metals (including lead) and PAH compounds were reported below the laboratory LOR or applicable screening criteria.

The following surface water samples were collected from Loddon River to assess whether metals and PAH impacts associated with surface water runoff were present:

- SW01 collected from Loddon River at the discharge point of the soak located near the western boundary. The sample was considered to be representative of surface waters (and any associated potential contaminants in the soil) discharging from the Site, however, it was noted that no surface water was entering Loddon River at the time of the collection.
- SW02 collected from Loddon River at the at the discharge point of the unnamed tributary running through the camping area near the southern reserve boundary. The sample was considered to be representative of surface waters (and any associated potential contaminants in the soil) discharging from the Site, however, it was noted that no surface water was entering Loddon River at the time of the collection.

Refer to **Figure 4** attached showing the above sample locations.

The concentrations of contaminants were reported below the laboratory LOR or applicable screening criteria, indicating that contaminant surface water transport off-Site is unlikely to be occurring. The results from the previous surface water sampling are provided in **Tables 14** to **16** (attached).

Based on the findings of the surface water sampling completed at the Site, no evidence for migration within surface water was found based on the concentrations of lead reported in the soil samples collected from the drainage lines and soak within the oval/racecourse area and the surface water samples collected from the two discharge points to Loddon River. It was acknowledged, however, that limited water was observed to be discharging at the time of sampling and another round of surface water sampling was recommended to be conducted during a rainfall event to confirm the contamination status of the water discharging to Loddon River.

¹⁵ Kleinfelder 2021, Clean-Up Plan – Glenlyon Recreation Reserve

Further details of a second surface water sampling event and assessment of the potential risk to relevant receptors is included in **Section 4.2** below.

3.6.4 Existing Risk Mitigation Strategies

The existing risk management controls previously implement by Council for the Site include:

- Temporary fencing installed over areas of concern associated with contamination previously reported
- Signage updated and installed on temporary fencing and permanent fencing at the entry points to the reserve
- Continued implementation of changed grass mowing so that dust generation is reduced
- Assistance to user groups developing event management plans to ensure contaminated soil is identified as risk and control measures are included and implemented
- Monitoring of temporary precautionary measures and during events to ensure controls remain functional and are implemented properly

4 FUTHER SOIL AND SURFACE WATER INVESTIGATION

4.1 SOIL

4.1.1 Objective

The objective of collecting additional soil samples was to assess whether similar concentrations to those reported during the Beveridge Williams PSCA can be repeated and whether similar concentrations are widespread at those previous sample locations.

The findings of the additional soil investigation were used to refine the conceptual site model (CSM) for the Site and the risk posed by elevated PAH compounds in soil to users of the Site.

4.1.2 Scope of Work and Methodology

The scope of the soil sampling included the following:

- Advancement of a total of 18 targeted boreholes (i.e. six boreholes per previous location) in a circle approximately 1 m from the following three previous Beveridge Williams soil sample locations where the highest concentrations of PAH compounds were previously reported:
 - SS15
 - SS27
 - SS29
- Collection of 36 primary soil samples using a hand auger to a depth of up to 0.5 metres below ground level (mbgl)
- Collection of clay target fragments (sample labelled S1) and a representative soil sample (sample labelled SW03) at the holding basin (soak) located near the western boundary and submitted for analysis to assess whether the elevated PAHs in soil are associated with clay target fragments
- Submission of collected samples under chain of custody (COC) documentation to a laboratory that has National Association of Testing Authorities (NATA) accreditation for the required analysis.
- Evaluation of analyte concentrations in comparison to the adopted benzo(a)pyrene toxic equivalence quotient (BaP TEQ) SSTL developed for the Site.

Beveridge Williams soil sample locations SS27 and SS29 previously targeted the debris drop zone. Sample location SS15 (which correlated with the highest concentration of BaP TEQ) was collected from one of the six firing areas (described by Beveridge Williams as Area 4).

It is noted that no co-ordinates of the previous Beveridge Williams soil sample locations were provided. These locations were therefore estimated from the supplied figures using geo-information software. The coordinates of the previous Beveridge Williams locations and the additional Kleinfelder targeted sample locations (using Universal Transverse Mercator (UTM), zone 55) are shown below.

- SS15: 256571.3894; 5868861.9946
 - SS15_1: 256571.3894, 5868862.9946
 - SS15_2: 256572.2554, 5868862.4946
 - SS15_3: 256572.2554, 5868861.4946
 - SS15_4: 256571.3894, 5868860.9946
 - SS15_5: 256570.5234, 5868861.4946
 - SS15_6: 256570.5234, 5868862.4946

- Sample location SS27: 256356.9454; 5868727.6323.
 - SS27_1: 256356.9454, 5868728.6323
 - SS27_2: 256357.8115, 5868728.1323
 - SS27_3: 256357.8115, 5868727.1323
 - SS27_4: 256356.9454, 5868726.6323
 - SS27_5: 256356.0794, 5868727.1323
 - SS27_6: 256356.0794, 5868728.1323
- Sample location SS29: 256414.7297; 5868880.2388.
 - SS29_1: 256414.7297, 5868881.2388
 - SS29_2: 256415.5957, 5868880.7388
 - SS29_3: 256415.5957, 5868879.7388
 - SS29_4: 256414.7297, 5868879.2388
 - SS29_5: 256413.8637, 5868879.7388
 - SS29_6: 256413.8637, 5868880.7388
- Sample location SW03/S1: 256224.6803, 5868811.8752

The sample locations are shown in Figure 6 (attached).

A description of the sampling program including the number of samples and analytical suite is outlined in **Table 4.1** below.

Item	Details
Soil Sampling	 Kleinfelder has performed the soil sampling program using the following methodology: Samples were collected using a decontaminated hand auger and placed directly into appropriate laboratory-supplied sample containers. Samples were collected from the following depths: Near surface – 0.0-0.1 mbgl Underlying natural soil (0.3-0.4 mbgl) An additional clay target fragment (sample ID S1) and underlying soil sample was collected at sample location SW03. Soil samples were collected by an environmental scientist/engineer and soil descriptions were recorded. The soil samples were collected by advancing the 75 mm hand auger to the desired depth (i.e. 0.1 and 0.3-0.4 mbgl), the auger was then withdrawn and the remaining soil added to the sample jar. The following samples were collected for quality assurance (QA)/quality control (QC): 1 x blind duplicate 1 x rinsate sample taken from re-usable equipment Samples were chilled in containers for delivery to the analytical laboratories under COC. All re-usable equipment was decontaminated between samples using Decon 90, and fresh nitrile gloves were used for every sample.

ltem	Details
Laboratory Analysis	 A total of 19 primary soil samples, collected from the near surface of each sample location have been analysed for PAH compounds. The collected clay target fragment (S1) was crushed and analysed for PAH compounds. A total of two QA/QC samples were analysed for PAH compounds.

4.1.3 Adopted Soil Criteria

The 2017 Victorian Environment Protection Act (the Act) identifies environmental values that are sought to be achieved or maintained for ambient air, ambient sound, land and water environments. Environmental values are provided in the environmental reference standard¹⁶ (ERS) that applies to each segment of the environment and specifies indicators and objectives to assess whether the environmental values are achieved, maintained or threatened.

The relevant ERS and environmental values based on the Site being zoned as PPRZ include:

- Land dependent ecosystems and species (modified and highly modified ecosystems)
- Human health
- Buildings and structures
- Aesthetics

Soil screening criteria specific for PAH compounds have been established in Schedule B1 of the NEPM. The concentrations of contaminants associated with the Site's historical use for clay target shooting previously reported in the soil were not considered to represent a risk to the above environmental values, with the exception of human health. This was due to the concentrations of BaP TEQ previously reported in the soil. As outlined in the Kleinfelder CUP, however, a SSTL for BaP TEQ was developed using published literature and the specific use of the Site.

Further detail of the SSTL for BaP TEQ that was adopted as part of this risk assessment for the protection of human health is discussed further in **Section 7** below.

4.1.4 Results

The soil profile encountered was generally consistent with the observations made during the previous Kleinfelder DSI and included:

- The borehole locations were all covered with grass.
- A fill layer of brown clayey silt to a depth of up to 0.4 mbgl.
- Natural grown/grey silty clay was observed underlying this fill layer.
- The soil sample collected at SW03 consisted of the same fill material as encountered in the boreholes.

The borehole logs for the sample locations are provided in Appendix A.

Clay target fragments were observed to be present at the surface at the soak (sample location SW03). No clay target fragments were observed at each of the targeted sample locations (SS15_1 to SS15_6, SS27_1 to SS27_6 and SS29_1 to SS29_6). No staining, foreign material or potential asbestos containing material (ACM) was observed in the inspected soil material.

In summary, the analytical result for the soil samples were as follows:

• The concentrations of BaP TEQ reported at each of the sample locations targeting the previous Beveridge Williams locations ranged from less than the laboratory LOR to 26 mg/kg.

¹⁶ Victorian Government, 2021. Environment reference standard. Victoria Government Gazette No S 245

- The concentrations exceeded the NEPM HIL C at seven sample locations but were less than the concentrations previously reported.
- The concentration of BaP TEQ reported for the clay target sample was 140 mg/kg.
- All PAH concentrations reported for soil sample SW03_0.0-0.1, collected at the same location as the clay target sample were below the laboratory LOR.

No samples collected from the underlying natural soil were analysed for PAH. Based on the concentrations reported in the samples previously analysed from the natural soil, however, no evidence of PAH migration through the soil profile was observed.

Soil laboratory results are summarised **Table 4D** (attached). The sample locations are provided on the attached **Figure 6**. Copies of the laboratory certificates of analysis are contained in **Appendix B**.

4.1.5 Discussion

The findings of the additional soil sampling confirmed that the elevated concentrations of PAH compounds (including BaP TEQ) are present in the soil at the Site and are associated with the binding material used in clay targets for recreational shooting. The spatial distribution of contaminants, where the highest concentrations were reported in those sample locations targeting the debris drop zone and firing areas, is consistent with that typically observed at a site used for shooting activities, as reported in the Beveridge Williams PSCA report. Although no visible clay target fragments were observed in the soil at the locations that targeted those locations where the highest concentrations of PAH compounds were previously reported, the results are considered to be due to the clay target fragments present in the soil.

The significantly elevated PAH concentrations are therefore considered to reflect soil samples with entrained clay target fragments and not representative of contamination which has leached from these materials and adsorbed to soil particles. This is further evidenced by the concentration of PAH reported in the soil sample collected at the soak (sample SW03) where a clay target fragment (high in PAH) was observed to be relatively intact. This fragment was likely deposited at this location as a result of surface water flow rather than being associated with the launch/fall of targets and the underlying soil would therefore have been subject to a significant amount of inundation/ potential leaching.

Based on the findings of the additional soil sampling, although isolated to the target drop/launch zone areas, the soil is impacted by carcinogenic PAH compounds and is considered to be associated with historical clay target shooting activities at the Site. As noted previously, based on the findings of a literature review, the bioavailability of carcinogenic PAH compounds in clay targets was considered to be significantly lower and unlikely to represent a risk to human health. This is further discussed further in **Section 7** below.

4.2 SURFACE WATER

4.2.1 Objective

As outlined in the Kleinfelder CUP, it was concluded that there was a need to perform further surface water sampling on-Site to confirm that the concentrations of contaminants of concern (including PAH and dissolved metals) are below the applicable screening criteria following a period of higher rainfall.

4.2.2 Scope of Work and Methodology

The scope of work included the following:

- Collection of surface water samples at representative locations on-Site and off-Site.
- Submission of collected samples under COC documentation to a laboratory NATA accredited for the required analysis.
- Evaluation of analyte concentrations in accordance with adopted screening criteria appropriate for the Site.
- Comparison of analyte concentrations to previous data collected.

A description of the sampling program including the number of sampling locations and analytical suite is outlined in **Table 4.2** below.

ltem	Details
Item Surface Water Sampling	 Kleinfelder collected surface water samples from the following locations: Samples at location SW1 were collected from an accessible location at the bank of the Loddon River approximately 2 m upstream and 2 m downstream from the entry point, respectively (SW1_1 and SW1_2). It was noted that no water was flowing from the Site to this discharge point during sampling and no sample could be collected in the drain to the Loddon River, immediately before discharge as this was dry at the time of sampling. Sample location SW2 at the Loddon River, downstream of the southern discharge point, and upstream of this discharge point from the unnamed tributary (SW4). Sample location SW5 at the Loddon River upstream of the Site, which was collected as a background sample. Surface water samples were collected by an environmental scientist/engineer, using a telescopic water sampler for the samples from the river and tributary. The sample from the soak was collected directly into the laboratory supplied bottles while wearing fresh nitrile gloves. The water samples were collected at an approximate depth of 0.3 to 0.4 m below the water surface at the Loddon River and unnamed tributary, which had a depth of approximately 0.5 m. The water samples from the soak were collected from just below the water surface, as the depth of the soak was less than 0.1 m. Field water quality parameters (including redox potential, pH, dissolved oxygen, electric conductivity, colour, odour and turbidity) were recorded at each sample location. Samples for metal analysis were filtered in the field prior to sampling (using 0.45 µm filters). The following samples were collected for quality assurance (QA)/quality control (QC): 1 x blind duplicate. 1 x plit triplicate (this sample was unintendedly analysed at both the primary and secondary laboratory). 1 x rinsate sample taken from re-usable equipment.
	 Samples were chilled in laboratory supplied containers for delivery to the analytical laboratories under COC. All re-usable equipment was decontaminated between samples using Decon 90.
Laboratory Analysis	 Six primary surface water samples were analysed for: Dissolved metals (including arsenic, cadmium, chromium, copper, lead, nickel and zinc). PAH. Nutrients, cations/anions, total dissolved solids (TDS) and total suspended solids (TSS). The two water QA/QC samples were analysed for dissolved metals and PAH.

A plan showing the surface water sample locations is included in Figure 4 (attached).

4.2.3 Adopted Surface Water Criteria

The Central Foothills and Coastal Plains Segment has been adopted and the applicable environmental values are:

- Water dependent ecosystems and species
- Agriculture and irrigation
- Human consumption of aquatic foods
- Industrial and commercial
- Water-based recreation

- Traditional owner cultural values
- Cultural and spiritual values

The criteria applicable to each of the above environmental values are included in Tables 14 to 16 (attached).

4.2.4 Surface Water Results

Water laboratory results are summarised in **Tables 14** to 16 (attached). Field logs are included in **Appendix A** and copies of the laboratory certificates of analysis are contained in **Appendix B**.

In summary, the analytical results for the stormwater samples were as following:

- PAH and dissolved metals were all reported below the laboratory limit of reporting (LOR).
- The nutrients, cations, anions, TDS and TSS concentrations were all below the adopted site criteria.
- All dissolved metals concentrations were below the adopted site criteria, with the exception of the copper concentration (0.005 mg/L) in sample SW03, exceeding the water dependent ecosystems and species – 95% freshwater criteria (0.0014 mg/L).

4.2.5 Discussion

- Based on the findings of the second surface water sampling event completed at the Site, it is considered that
 the elevated concentrations of contaminants present in the soil and associated with clay target shooting do
 not represent a potential risk to surface water receptors.
- It is noted that concentrations of dissolved metals reported at the soak (SW03) were higher than the laboratory LOR and the concentration of copper exceeded relevant criteria. At the time of sampling, however, the water level at the soak was low, with the depth of water being less than 100 mm. The water was stagnant with no water flowing between the drainage lines and the nearest receptor (Loddon River). The concentrations of dissolved metals are therefore likely to be more concentrated due to less water being present as a result of evaporation. The concentrations are considered to be higher than they would be during times of higher rainfall, where the volume of water would be higher.

5 QUALITY ASSURANCE/QUALITY CONTROL

5.1 LABORATORY QA/QC PROGRAM

5.1.1 Quality Control Samples

As part of the laboratory internal QA/QC, the laboratories conduct regular audits on their analyses through the use of reagent blanks, analysis of surrogate spikes, repeat duplicates and verification of recoveries.

Kleinfelder completed a review of the laboratory QA/QC sample data collected during the project in accordance with Australian Standard, *Guide to the investigation and sampling of sites with potentially contaminated soil* (AS 4482.1).

A review of the primary and secondary laboratories internal laboratory QA/QC program presented as part of their final NATA reports indicated the QA/QC duplicate outliers presented in **Table 5.1** below.

ltem	Details
Laboratory frequency of quality control samples	The number of internal quality control soil samples at the secondary laboratory (ALS) for Laboratory Reports EM2200148 and EM2200200 were insufficient for PAH/Phenols (SIM) for the matrix spikes.
	The number of internal quality control water samples at the secondary laboratory (ALS) for was insufficient for PAH/Phenols (GC/MS $-$ SIM), for both the laboratory duplicates as the matrix spikes.
Laboratory method duplicates	All internal laboratory duplicate and method spikes reported RPDs within the acceptable range.
Laboratory method blanks	All internal laboratory method blanks recoveries were within the acceptable range.
Laboratory method spikes	All internal laboratory method spike recoveries were within the acceptable range.

Table 5.1: QA/QC duplicates

Overall, a sufficient frequency of laboratory duplicates, laboratory control samples, matrix spikes and surrogate spikes were reported to assess the accuracy of the laboratory methods and potential bias due to matrix effects and extraction efficiency. A sufficient frequency of laboratory method blanks was reported to assess for potential laboratory cross-contamination from sampling equipment or analysis equipment. Therefore, the outliers listed above are not considered to affect the interpretation of the reported data and the results are considered to be representative of soil and surface-water at the time of sampling.

5.1.2 Holding Time Compliance

Analysis holding time breaches for PAH compounds and moisture content were reported for all soil samples for the primary laboratory in Laboratory Report EM2200148. The holding time for PAH (14 days) is for volatile compounds and these are not the contaminant of concern in clay targets. The holding time for semi-volatile PAH compounds is 28 days and the initial analysis was completed within this time period. It is noted that a repeat analysis was requested due to the variability in concentrations of PAH compounds reported between the primary and secondary laboratories and the holding time for the repeat analysis slightly exceeded the holding time of 28 days. Shooting activities were halted at the Site in 2020 and therefore the clay targets have been present on the surface of the Site for a significant period of time. The minor breach in the holding time was therefore not considered to impact upon the overall interpretation of results.

Holding times for PAH were also exceeded for the secondary laboratory in Laboratory Report EM2200148 for surface water sample QC02. This was due to the delay in the transport of the sample from the primary laboratory. Again semi-volatile compounds have a holding time of 28 days and analysis was completed within this time period.

All other analytes for the soil and surface water samples were received at the laboratory, extracted and analysed within their respective holding times.

5.1.3 Laboratory Limits of Reporting

Laboratory limits of reporting (LOR) for soil and surface water samples were sufficiently low to enable comparison of contaminant concentrations with adopted screening, with the exception of total PAH in surface water.

The PAH compounds were reported at concentrations below the laboratory LOR in all surface water samples analysed. The LOR adopted for the second monitoring event was greater than the criteria applicable to the environmental values for stock watering for BaP, and drinking water and recreational water for total PAH.

The environmental values are unlikely to be realised both on-Site and off-Site and results are not considered to impact upon the overall interpretation of the findings. Furthermore, the concentrations of PAH compounds were reported below the ultra-trace LOR applied during the first sampling event, which were below the criteria.

5.2 FIELD QA/QC PROGRAM

5.2.1 Relative Percentage Difference

Kleinfelder adopts a relative percent difference (RPD) acceptance criterion of up to 50% in accordance with the AS 4482.1. The RPD was calculated for duplicate and triplicate field samples as shown.

$$RPD = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} x100$$

where: Co = concentration of the primary sample

Cs = concentration of the duplicate sample

RPDs are presented in Tables 9 to 12 for soil and Tables 17 to 20 for surface water (attached).

Where RPDs where incalculable due to one or more QC samples reporting contaminant concentrations less than laboratory LOR, the LOR value has been adopted to allow RPD calculation. Where RPDs exceeded the 50% acceptance criterion for QC samples, the highest concentration was adopted for interpretative use.

The duplicate and triplicate samples of this assessment met the acceptance criteria, with the exception of various PAH compounds in soil, which were reported consistently higher in the primary sample than in the duplicate and triplicate sample.

• This consistent difference between the primary sample, compared to both the duplicate and triplicate sample, is associated with the inherent heterogeneity of the clay target fragments entrained within the soil and/or low analyte concentrations reported.

5.2.2 Rinsate and Trip Blanks

Rinsate blanks were collected from field sampling equipment during the soil sampling and surface water sampling works in order to assess the effectiveness of decontamination procedures. All analytes were reported below the laboratory LOR in the rinsate blanks, indicating that that the decontamination procedures used were appropriate and that cross-contamination between locations by reusable sampling equipment is unlikely to have occurred.

No trip blanks were collected or analysed during the soil and surface water sampling as volatile organic compounds (VOC) were not considered to be contaminants of concern and cross-contamination during transport and storage of the compounds analysed was not considered likely.

Quality control rinsate results are presented in Tables 13A and 20 (attached).

5.3 QA/QC CONCLUSIONS

Based on the above QA/QC review, Kleinfelder considers data quality to be acceptable for interpretive use.

Copies of the final NATA endorsed laboratory reports, including internal QA/QC results and CoC documentation for both laboratories are attached as **Appendix B**.

6 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a qualitative analytical tool that identifies the sources of contamination, exposure pathways and potential receptors on-Site and in the site surroundings. A CSM also provides a discussion of the nature and extent of impacts and relevant source-pathway-receptor (S-P-R) linkages.

The CSM previously prepared in the Kleinfelder CUP has been refined to reflect the updated risk profile at the Site based on the findings of additional soil and surface water sampling.

It is acknowledged that this CSM relates only to contamination caused by shooting activities and not by other potential sources of historical contamination at the Site. Based on the historical review, however, particularly the information that horse racing commenced at the Site since 1867, and the absence of alluvial gold mining, it is considered unlikely that contaminating activities (other than clay target shooting) were undertaken at the Site.

6.1 EVALUATION OF EXPOSURE PATHWAYS

6.1.1 Source

Based on the historical use of the Site for clay target shooting, the conclusions from the previous reports for the Site and the findings of further soil and surface water investigation at the Site, the sources of contamination were identified as:

- Lead shot:
 - Shotgun pellets are contained within shotgun wads and are made up of lead.
 - Lead shot is principally a mixture between antimony (0.5 to 6.5 wt% (for hardness)) and lead with minor arsenic (0.1 wt%) and tin (0.1 wt%) concentrations; trace elements (i.e., <1,000 mg/kg) include bismuth, copper, zinc, chromium and silver.</p>
- Clay targets:
 - Historically made of limestone and bitumen mixture.
 - The bitumen makes up approximately 30% of the targets and may contain between 0.5 and 5% polycyclic aromatic hydrocarbon (PAH) compounds¹⁷.

The unused targets and larger target fragments can be removed from the environment using physical methods and this was previously undertaken by the members of the Daylesford Field and Game Association Inc in accordance with the conditions of their licence for clay target shooting. Based on the findings of additional soil sampling completed by Kleinfelder in 2021, however, it is considered that the elevated concentrations of PAH compounds reported in soil are likely associated with smaller clay target fragments not visible to the eye. These fragments would be unable to be recovered by hand and therefore become entrained within the soil.

6.1.2 Spatial and Vertical Distribution – PAH in Soil

The PAH concentrations reported at the Site reveal a spatial distribution pattern. The previous Beveridge Williams PSCA identified total PAH compounds above the laboratory LOR in 21 out of the 30 samples analysed (or 70% of samples). In contrast, total PAH compounds were only reported above the laboratory LOR in 19% of the shallow soil samples reported during the Kleinfelder DSI (i.e., 10 out of 54). As shown in **Figure 6.1** below, however, the majority of Beveridge Williams samples were concentrated within the six target launch areas and the debris drop zones. There is a discernible correlation between the elevated PAH concentrations and the approximate 50 to 90 meter fall zone, where the majority of target fragments are likely to have previously been deposited. The 50 to 90 meters fall zone was estimated from near the centre of the launch areas.

¹⁷ Environment Canterbury, 2006. Potential for contamination from clay target debris at shooting sites: Review of literature on occurrence of site contamination from clay targets. Report No. U06/81

As discussed previously, based on the concentrations reported in the samples previously analysed at depth from the underlying natural soil, no evidence of PAH migration through the soil profile was observed.

Based on the distribution observed and the sampling methodology employed, both during the initial investigation and recent soil sampling completed by Kleinfelder, it can be concluded that the PAH distribution is likely consistent with the conceptual model PAH fall zone as demonstrated in **Figure 6.1** below.

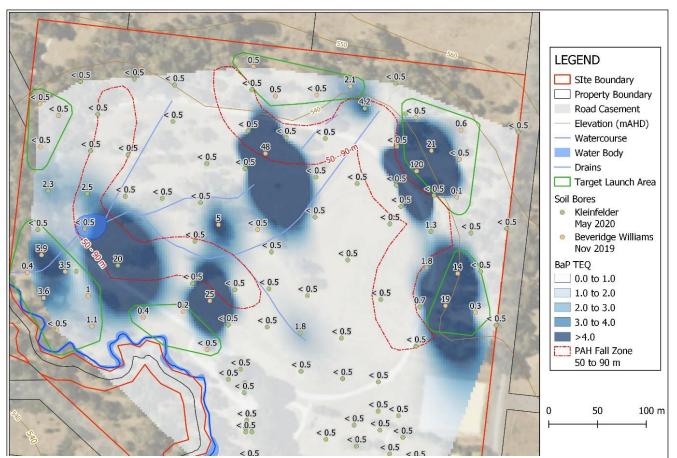


Figure 6.1: Interpolated BaP TEQ concentrations, with estimated 50 to 90 metre fall zones from indicated launch _ areas.

6.2 PATHWAY

The potential primary exposure pathways for the migration of the identified contaminants of concern are:

- Dermal contact.
- Dust inhalation.
- Direct and incidental ingestion.
- Discharge of contaminated groundwater/stormwater.

6.3 RECEPTORS

Based on an ongoing recreational and public open space use of the Site, the potential receptors include:

- On-Site and Off-Site recreational users (e.g. equestrian, shooting, dog walkers, camping activities, children's playground)
- On-Site visitors (e.g., spectators)
- Off-Site residential users
- On-Site and Off-Site groundwater extraction for drinking water purposes

• On-Site and Off-Site ecosystems (terrestrial and freshwater)

The S-P-R linkages associated with the identified contaminants of concern are outlined in Table 6.1 below.

Table 6.1: Clay Target Shooting S-P-R Linkages

Source	Pathway	Receptor	Risk to Receptor	Comments
	Dermal contact Dust inhalation Direct and incidental ingestion	On-Site and Off-Site recreational users (current and future) Off-Site residential receptors		The concentrations of lead in soil do not exceed the Tier 1 human health inver- evaluation of the dataset. No exceedances of lead were reported in other areas on-Site and off-Site
	Plant uptake within the root zone (applicable to 2 mbgl)	On-Site terrestrial ecosystem		The concentrations of lead in soil do not exceed the applicable ecological i
Lead shot	Migration in groundwater.	On-Site and off-Site extractive groundwater users On-Site and off-Site terrestrial and freshwater ecosystems	Acceptable	Limited leaching of lead in soil to the groundwater was observed, which has reported above the adopted screening criteria.
	Discharge to and migration in surface water	On-Site and off-Site receptors (as listed in Section 6.3 above)		 No evidence for migration within surface water was found based on the foll The concentrations of lead were reported below the laboratory LOR of from the soak within the oval/racecourse area, from the two discharge point at the unnamed tributary. The concentrations of lead reported in the samples collected from the two area and the sediment/surface water samples collected from the two adopted criteria.
	Dermal contact Dust inhalation	On-Site recreational Site users (current and future)	Potentially acceptable (subject to further risk assessment)	Although concentrations of BaP TEQ in soil exceed 250% of the HIL C, NI findings of the literature review, however, the bioavailability of carcinogen lower and a SSTL for BaP TEQ could be developed to assess whether the risk to human health. This is discussed further in Section 7 below.
	Direct and incidental ingestion	Off-Site recreational users (current and future) Off-Site residential receptors		No exceedances of PAH compounds were reported in other areas on-Site
Used clay	Plant uptake within the root zone (applicable to 2 mbgl)	On-Site terrestrial ecosystem		The concentrations of BaP and TRH (>C16-C34) in soil do not exceed the N dataset. No evidence of potential impact (i.e. stressed vegetation) was observed du
targets (PAH, BaP TEQ)	Migration in groundwater.	On-Site and off-Site extractive groundwater users On-Site and off-Site terrestrial and freshwater ecosystems	Acceptable	PAH associated with clay targets is typically non-leachable (as evidenced groundwater generally being less than the laboratory LOR). Concentrations of PAH in groundwater were less than the adopted screeni
	Discharge to and migration in surface water	On-Site and off-Site receptors (as listed in Section 6.3 above)		 No evidence for migration within surface water was found based on the foll The concentrations of PAH compounds were reported below the la samples collected from the soak within the oval/racecourse area, fro upstream of the discharge point at the unnamed tributary. The concentrations of PAH compounds reported in the samples collect oval/racecourse area and the sediment/surface water samples collect were below the adopted criteria.

investigation levels (NEPM HIL C) following statistical

ite where soil sampling was completed.

al investigation levels (NEPM EIL).

has not resulted in groundwater concentrations being

following:

R or adopted criteria in the surface samples collected harge points to Loddon River and upstream of the

ne drainage lines and soak within the oval/racecourse wo discharge points to Loddon River were below the

NEPM assumes 100% bioavailability. Based on the genic PAH compounds in clay targets is significantly the PAH compounds in clay targets on-Site pose a

ite and off-Site where soil sampling was completed.

ne NEPM EIL/SL following statistical evaluation of the

during investigation works on-Site.

ced by the concentrations of PAH compounds in in

ening criteria.

following:

e laboratory LOR or adopted criteria in the surface from the two discharge points to Loddon River and

ollected from the drainage lines and soak within the ected from the two discharge points to Loddon River

7 EXPOSURE RISK ASSESSMENT

7.1 BACKGROUND

Based on the identified S-P-R linkages developed for the Site as outlined in **Section 6** above, Kleinfelder has completed further evaluation of the potential exposure of receptors to carcinogenic PAH compounds at the Site.

Further refinement of the exposure risk assessment has been undertaken to further establish the nature and extent of risks posed by PAH contamination and whether the following is required for the Site:

- Further analysis and risk assessment
- Remediation of the soils
- Continuation of existing management controls and/or further management requirements

7.2 LITERATURE REVIEW

Bioaccessibility is generally defined as the ability of a chemical to come into contact with the absorbing surfaces in an organism. The chemical can only be absorbed when it is in a liquid or gaseous form. It is expressed as the percentage of the amount available for absorption compared to the total in a solid form.

Bioavailability is defined as the percentage of a chemical that is absorbed into the body following dermal contact, or exposures via ingestion or inhalation.

When developing Tier 1 screening levels, the NEPM assumes 100% bioavailability and also states that PAH compounds do not pose significant human health risks where they are present in bitumen fragments, as the compounds are immobile and have low bioavailability¹⁸. It also notes that bioavailability is highly site and PAH source specific.

As such, a literature review was previously undertaken to provide a greater understanding of whether the PAH compounds pose potential risks to human health. The literature review was performed on readily available articles and reports related to clay targets at shooting ranges.

The Interstate Technology and Regulatory Council (ITRC)¹⁹ notes that clay targets are composed of approximately 70% limestone (calcium carbonate) and 30% binding material (pitch, bitumen or other organic materials), with PAH compounds sourced from the binding material. PAH concentrations in clay targets varies widely, however, the highest concentrations are found in targets using pitch (crude oil or coal tar processing residues) as the binder²⁰. Total PAH concentrations in the clay targets vary with concentrations ranging from 1,000²¹ to 100,000²² mg/kg. Total PAH concentrations reported in surface Site soil samples range from below the laboratory LOR to 780 mg/kg, with the higher concentrations observed in areas where clay target fragments were present in the soil.

In the study conducted by Baer et al. it was found that:

• Similar PAH concentrations in new and weathered clay targets shows that the PAH are tightly bound in the targets and the targets were the PAH source in sediments near the study area.

¹⁸ National Environment Protection (Assessment of Site Contamination) Amendment Measure, 2013. Schedule B7, Appendix A2: The derivation of HILs for PAHs and phenols.

¹⁹ Interstate Technology Regulatory Council, 2005. Environmental management at operating outdoor small arms firing ranges.

²⁰ Lobb, A., 2006. Potential for PAH contamination from clay target debris at shooting sites: Review of literature on occurrence of site contamination from clay targets. Report U06/81.

²¹ Baer, K.N. et al., 1995. Toxicity evaluation of trap and skeet shooting targets to aquatic test species. Ecotoxicology, 4, 385-392.

²² Gonzalez, G.R., 2003. Contaminants at a shooting range: Toxicological and nutritional significance to birds and mammals. Masters Thesis, Virginia Polytechnic Institute and State University.

• PAH were unlikely to be bioavailable in the aquatic environment.

More recently Forsberg et al²³ assessed the PAH relative oral bioavailability and dermal absorption from \leq 250 µm soil fractions collected at two former clay target shooting ranges in the United States. The sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene concentrations in the soil samples ranged from 34 to 18,500 mg/kg. Forsberg et al concluded:

- The mean benzo(a)pyrene oral relative bioavailability factors ranged from 8 to 14% and the dermal absorption factors ranged from 0.6 to 1.3%.
- The mean chrysene and benzo(a) anthracene oral factors ranged from 30 to 38% and 15 to 23%, respectively.
- Compared to the benzo(a)pyrene residential soil USEPA RSL²⁴ the benzo(a)pyrene screening criteria (1.1 mg/kg) would be eight times higher, at the 1:105 cancer target risk factor, for soil from the clay target shooting ranges.
- The benzo(a)pyrene relative oral bioavailability could conservatively be used for the three additional carcinogenic PAH compounds not studied.
- Dermal adsorption fractions for the five PAHs ranged from 0 to 3.6% in the soil samples and from 0 to 1.1% for a pulverised clay target. Dibenz(a,h)anthracene adsorption was 0% in all samples.

The compounds investigated by Forsberg et al comprise six of the eight carcinogenic compounds used to calculate the NEPM BaP TEQ, which assumes 100% bioavailability. The PAH bioavailability from soil containing clay target fragments was found by Forsberg et al. to be lower than 100%, but not unavailable. The human health risk posed by PAH compounds in Site soil is therefore likely to be lower than that indicated by comparison to the NEPM HIL C for BaP TEQ as discussed further below.

7.3 DERIVATION OF SSTL FOR BAP TEQ

Based on the findings of the literature review, the bioavailability of carcinogenic PAH compounds in clay targets was considered to be significantly lower and a SSTL for BaP TEQ could be developed to assess whether the PAH compounds in clay targets on-Site poses a risk to human health.

As outlined in the CUP, and as verified in the auditor clean up plan verification report²⁵, the SSTL for BaP TEQ provides a value to replace the HIL C provided in Schedule B1 of the NEPM. The NEPM HIL excel spreadsheet calculator was used to calculate BaP TEQ SSTL using modified oral/dermal factors and exposure frequencies.

Further details of how the SSTL was developed for BaP TEQ using published literature to assess the risk that this contaminant poses to human health is discussed further below.

7.3.1 Oral and Dermal Bioavailability

The oral relative bioavailability factors for benzo(a)anthracene and chrysene as resulting from Forsberg et all are higher than the one for benzo(a)pyrene. This is not considered to pose a problem as these two compounds have a toxic equivalence factor (TEF) of 0.1 and 0.01, respectively, while benzo(a)pyrene has a TEF of 1. In addition to this, Forsberg states that the benzo(a)pyrene value, when used to represent the other compounds (benzo(b+f)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3,cd)pyrene and dibenz(a,h)antrhracene), is a conservative measure.

Based on the literature review it is considered that information obtained by Forsberg et al could be used to estimate a BaP TEQ screening criteria for the Site if the PAH concentrations in $\leq 250 \mu m$ soil fractions are used. No data is currently available for the $\leq 250 \mu m$ soil fractions for the Site, however, given the nature of the PAH

 ²³ Forsberg, N.D., et al., 2021. Oral and dermal bioavailability studies of polycyclic aromatic hydrocarbons from soils containing weathered fragments of clay shooting targets. Environmental Science and Technology, 55, 6897-6906.
 ²⁴ United States Environment Protection Agency regional screening level

²⁵ Senversa(2021), Clean-Up Plan Verification and Assessment Report, Glenlyon Recreation Reserve, Sutton Lane, Glenlyon VIC

concentration, where the highest concentrations were reported in the clay target fragment collected from the Site (140 mg/kg), it is expected that the total PAH concentrations reported (i.e. the unsieved results) would be higher than the \leq 250 µm µm soil fractions.

Although the clay target fragments are considered to be entrained within rather than bound to the soil, the soil type where the study was completed was noted to be silty loam, sandy loam or sandy clay loam, which is considered to be relatively consistent to the predominant soil type where the elevated concentrations of PAH were reported at the Site (i.e. clayey silt). The values applied by Forsberg et al are therefore considered appropriate to use to adjust the HIL specific for the Site.

Using the upper ranges of the BaP oral relative bioavailability (14%) and dermal absorption factor (1.3% or 0.013), calculated by Forsberg et al, the HIL increases to:

- For early-life, the HIL becomes 20 mg/kg
- For adults, the HIL becomes 50 mg/kg

The HIL calculation sheets with these adjusted values are provided in Appendix C1.

7.3.2 Receptors of Concern

Adjustment factors are applied to the calculation of risks associated with early-life exposures and the early-life HIL is based on children being exposed from birth. As per Schedule B4 of the NEPM, the adjustment factors include the following:

- A ten-fold adjustment for exposures during the first 2 years of life
- A three-fold adjustment for exposures from ages 2 to less than 16 years of life
- No adjustment for exposures for ages 16 years and older.

Based on the information provided by Council, the most sensitive receptor (i.e. early-life) will not be walking in those areas where the highest concentrations of BaP TEQ were reported given that at this age they are likely to be in prams or assisted by their guardians on the more stable ground available (i.e. walking tracks as noted in **Figure 7.1** below) and not in the grassed areas where the impacts were reported.

Kleinfelder previously completed soil sampling and analysis in the children's playground located to the south of the oval/racecourse area (samples PG01 to PG05) and the concentrations of PAH compounds were all below the laboratory LOR.

Kleinfelder also completed soil sampling and analysis in other areas of the Site as part of the DSI, which included a children's playground located to the south of the oval/racecourse area (samples PG01 to PG05). This area is not considered to pose a risk to children, based on the concentrations of BaP TEQ reported in the targeted soil sampling completed. In addition, other areas of the Site were assessed, which included the barbecue area (samples BS01 to BS11), camping area (samples CG01 to CG12), mounting yard area (samples MY01 to MY05), pavilion (samples PV01 to PV10), eastern and south-eastern fence lines (samples FB01 to FB05) and neighbouring properties to the north, east and west of the Site (SB01 to SB14). The concentrations of PAH compounds were all below the adopted criteria, which demonstrates that the contamination associated with shooting activities at the Site is confined to the oval/racecourse area.

As discussed in **Section 3.2** above, however, based on the Site being accessible to the general public (with the exception of shooting/equestrian events), both adults and early-life are considered to be receptors of concern given there is no restricted access to the wider oval/racecourse area where the highest concentrations of BaP TEQ were reported at the Site.

7.3.3 Exposure Frequency

The SSTL is based on an exposure frequency of 365 days/year. Although the Site is publicly accessible every day of the year (with the exception of shooting/equestrian events), an exposure frequency of 365 days/year is very conservative as it assumes that the same individual would be exposed to the same BaP TEQ concentrations every day of the year for two hours a day for their entire lifetime.

This is therefore considered to overestimate the most likely exposure frequency for the receptors of concern based on the following information provided by Council:

- It is highly unlikely that a potential receptor will access the areas where the highest concentrations of BaP TEQ were reported every day of the year for two hours a day given that walking tracks have been established and are not located in those areas where the highest concentrations were reported. Refer to Figure 7.1 below showing the location of the established walking tracks at the Site.
- The majority of the Site (including the area where the highest concentrations of BaP TEQ compounds were
 reported) is covered by thick vegetation, comprising grass and trees. It is therefore considered unlikely that
 receptors would be exposed to those same concentrations reported in the surface soil, which was accessed
 following the removal of organic material (including the surface grass and underlying rootlets) from the surface
 soil.
- Equestrian events are limited to once a week at the Site. In addition, the equestrian riders do not frequently
 ride in those areas of the Site where the highest concentrations of BaP TEQ were reported. Where the riders
 do use the areas where the highest concentrations of BaP TEQ were reported, this is limited to once per
 month.
- As previously noted in Section 3.2.2 above, shooters use the Site once per month on a scheduled day (Sunday) and public access is restricted during shooting events, with spectators observing from the boundary fences surrounding the oval/racecourse area and not in the area where the highest concentrations of BaP TEQ were reported.
- Public events that may be held are normally held annually or at a frequency less than 2-days a week.

As such, a more likely exposure frequency has been reduced to two times per week (i.e. 104 days/year), which is considered to be protective of the receptors at the Site.

The site-specific HILs are therefore further increased to:

- 60 mg/kg for early-life
- 200 mg/kg for adults

The HIL calculation sheets with these adjusted values are provided in **Appendix C2**.

Based on this adopted SSTLs for early-life and adult for both exposure frequencies (i.e. 365 days/year and 104 days/year), the exceedances reported both during the initial investigations and recent soil sampling completed by Kleinfelder are shown in **Figure 7.2** and **7.3** below.

Figure 7.1: Walking tracks at the Site (yellow are the walking trails; red is the fence line)

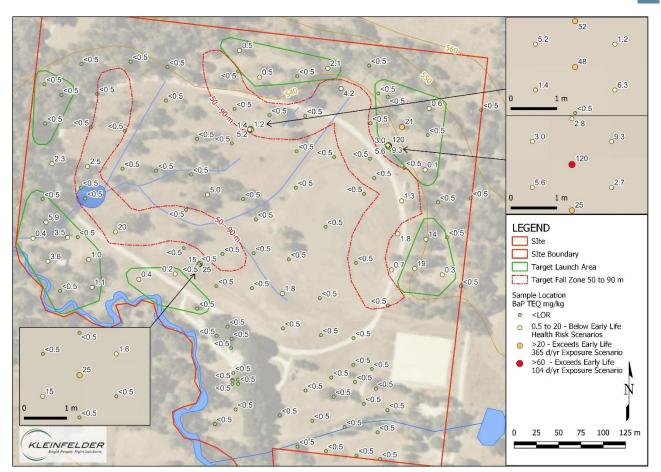


Figure 7.2: Site specific SSTLs for BaP TEQ (early-life)

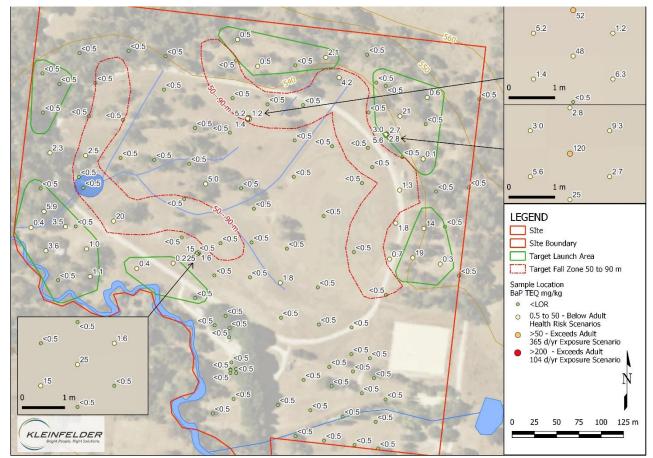


Figure 7.3: Site specific SSTLs for BaP TEQ (adult)

7.4 STATISTICAL EVALUATION OF DATASET AND RISK CHARECTERISATION

The statistical evaluation for BaP TEQ surface data provided in the Kleinfelder CUP has been updated to include the most likely SSTL developed for the Site (i.e. 60 mg/kg). The data is summarised in **Table 7.1** (below). It is noted that soil samples collected during the recent targeted soil sampling completed by Kleinfelder are not included in this statistical analysis as these samples targeted the previous soil sample locations.

Descriptor	BaP TEQ (mg/kg)	Samples Exceeding Criteria
SSTL	60	1
Arithmetic mean	3.726	0
95% upper confidence limit (UCL) mean	10.59	0
Standard deviation	14.44	0
250% SSTL	150	0

 Table 7.1:
 Statistical Evaluation of the Dataset – BaP TEQ

Based on the findings of the statistical evaluation of the dataset, the 95% UCL BaP TEQ concentration is below the most conservative modified HIL developed for the Site (i.e. 20 mg/kg). As such, in the event that individuals are accessing those areas where the highest concentrations of BaP TEQ every day of the year, the associated health risk would be low and acceptable.

Whilst the concentration of one Beveridge and Williams sample (SS15), located in the northeast portion of the Site exceeded the most likely SSTL developed for the Site (i.e. 60 mg/kg), the 95% UCL is considered to be more statistically accurate representation of average concentrations to which a receptor is potentially exposed. In addition, given that the reported concentrations of BaP TEQ in this single exceedance were similar to the concentrations of the clay target fragments analysed during the recent Kleinfelder soil sampling, it is considered that this individual sample result is strongly affected by the presence of residual clay target fragments. Kleinfelder collected an additional six samples targeting this location and the highest reported concentration of BaP TEQ (i.e. 25 mg/kg) was below the adopted SSTL. The concentration of BaP TEQ was also less than 250% of the SSTL developed for the Site (i.e. 150 mg/kg). The elevated sample location is likely to overstate the potential exposure risk (particularly over a lifetime). It is therefore considered not to be representative of the overall risk profile for the Site.

Based on the SSTL derived for the Site, statistical evaluation of the dataset and the risk profile of the soil, the concentrations of BaP TEQ are below the site-specific risk-based criteria. The human health risks posed are therefore considered to be low and acceptable and, as such, this environmental value is not precluded.

7.5 TRIGGERS AND CONTINGENCIES

In accordance the CUP previously prepared by Kleinfelder²⁶, further contingencies (as outlined in Stage 3 of the CUP) to further assess the risk posed by historical clay target shooting activities at the Site are not considered to be required for the Site, based on the following triggers not being met:

- A SSTL for BaP TEQ using published literature was sufficient to assess the risk that this contaminant poses to human health.
- Elevated concentrations of contaminants were not reported in the surface water.

7.6 ASSUMPTIONS AND LIMITATIONS

Risk assessments require a number of assumptions regarding site conditions, human exposure and the toxicity of contaminants. Although, specific parameters relating to the Site's current use were included as part of the

²⁶ Kleinfelder 2021, Clean-Up Plan – Glenlyon Recreation Reserve

derivation of the SSTL, it is not possible to assume that the conditions and activities at the Site will not change over time.

The assumptions considered as part of the exposure risk assessment, however, were considered to be conservative, which accounts for the uncertainty and variability used to derive the calculations for the protection of human health applicable to a public recreational reserve.

Furthermore, the nature and extent of impact has been delineated in soils within the oval/racecourse area and does not extend to other areas of the Site used by members of the public.

Overall, the assumptions considered as part of the exposure risk assessment adopt the Precautionary Principle in estimating risk²⁷. The risk assessment presents conditional estimates based on a number of assumptions regarding exposure and toxicity. It is acknowledged that this is an iterative process, and the methodologies and limitations are subject to change over time. This should be recognised when considering the ongoing public recreational use of the Site.

²⁷ enHealth, 2012. Environmental Health Risk Assessment – – Guidelines for Assessing Human Health Risks from Environmental Hazards

8 CONCLUSION

Kleinfelder was engaged by Hepburn Shire Council to prepare this risk assessment report for the Glenlyon Recreation Reserve, located on Suttons Lane Glenlyon, Victoria.

This risk assessment is a response to the EPA Victoria amended CUN 90011425, issued to the Council on 24 May 2021 and follows the Kleinfelder CUP. This report includes the findings of additional soil and surface water data collected for the Site to assess the potential risk to the environment and human health in relation to the Site's historical use for clay target shooting.

Based on the findings of the further sampling and risk appraisal of the Site, Kleinfelder concludes the following:

- The risk posed by contaminants of concern associated with clay target shooting (i.e. lead and PAH compounds) in the Site's soil and surface water to all identified receptors is considered to be low and acceptable.
- Given the risks are considered to be low and acceptable, no further risk assessment, remedial actions or further management controls are required for the Site based on its ongoing use as a public recreational reserve.
- The management measures being taken by the Council to manage the potential short-term exposure risk to public health and the environment are no longer considered to be required. It is recommended, however, that the risk mitigation measures outlined in the Environmental Management Plan previously prepared for the Site ²⁸ are employed as part of the recommencement of clay target shooting activities at the Site.

²⁸ Kleinfelder, 2021. Environmental Management Plan, Daylesford Field and Game Association Inc., Glenlyon Recreation Reserve

9 LIMITATIONS

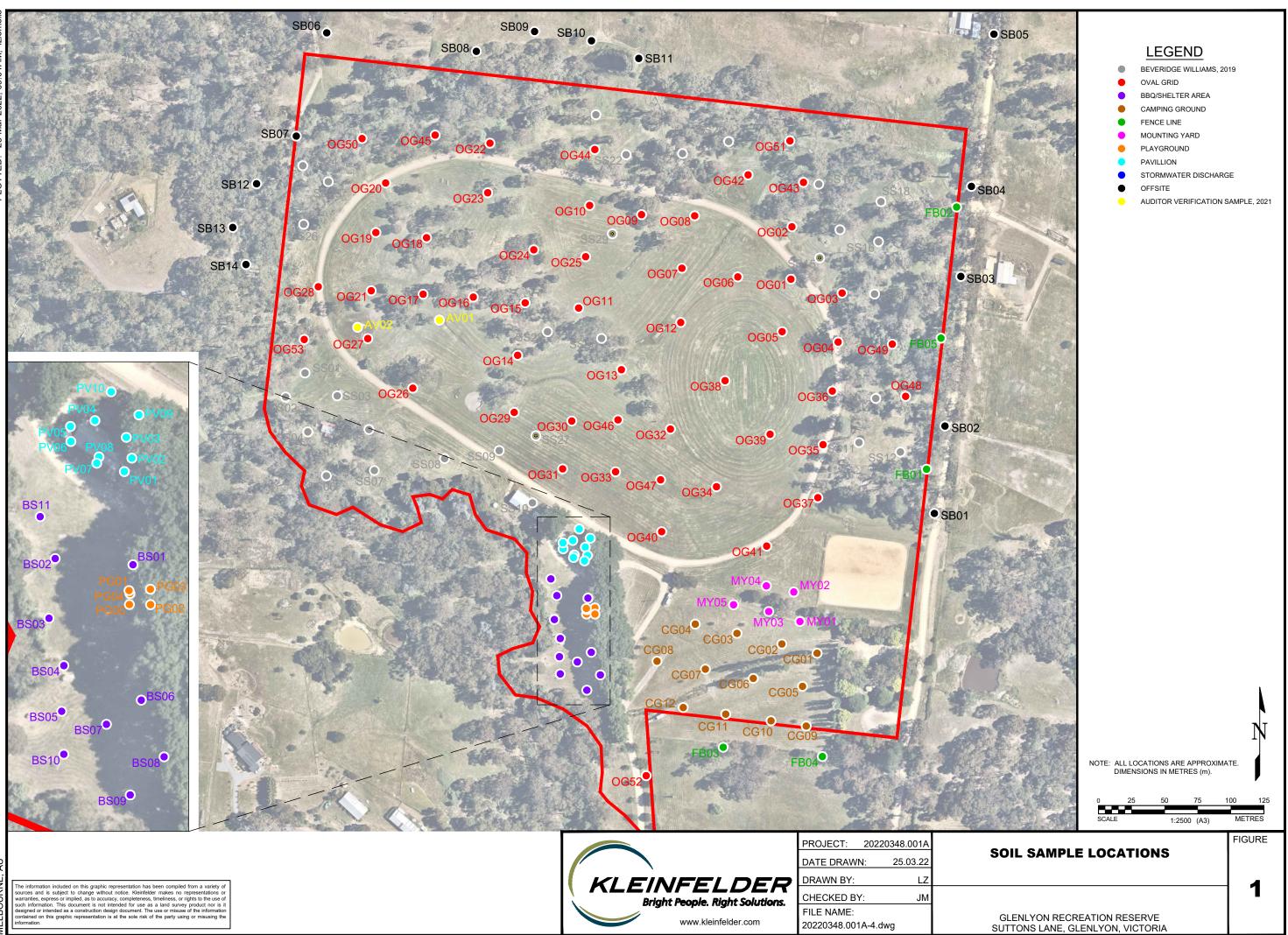
This report has been prepared by Kleinfelder Australia Pty Ltd (Kleinfelder) and may be used only by the Client and its designated representatives or relevant statutory authorities and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report.

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions, and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee, or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

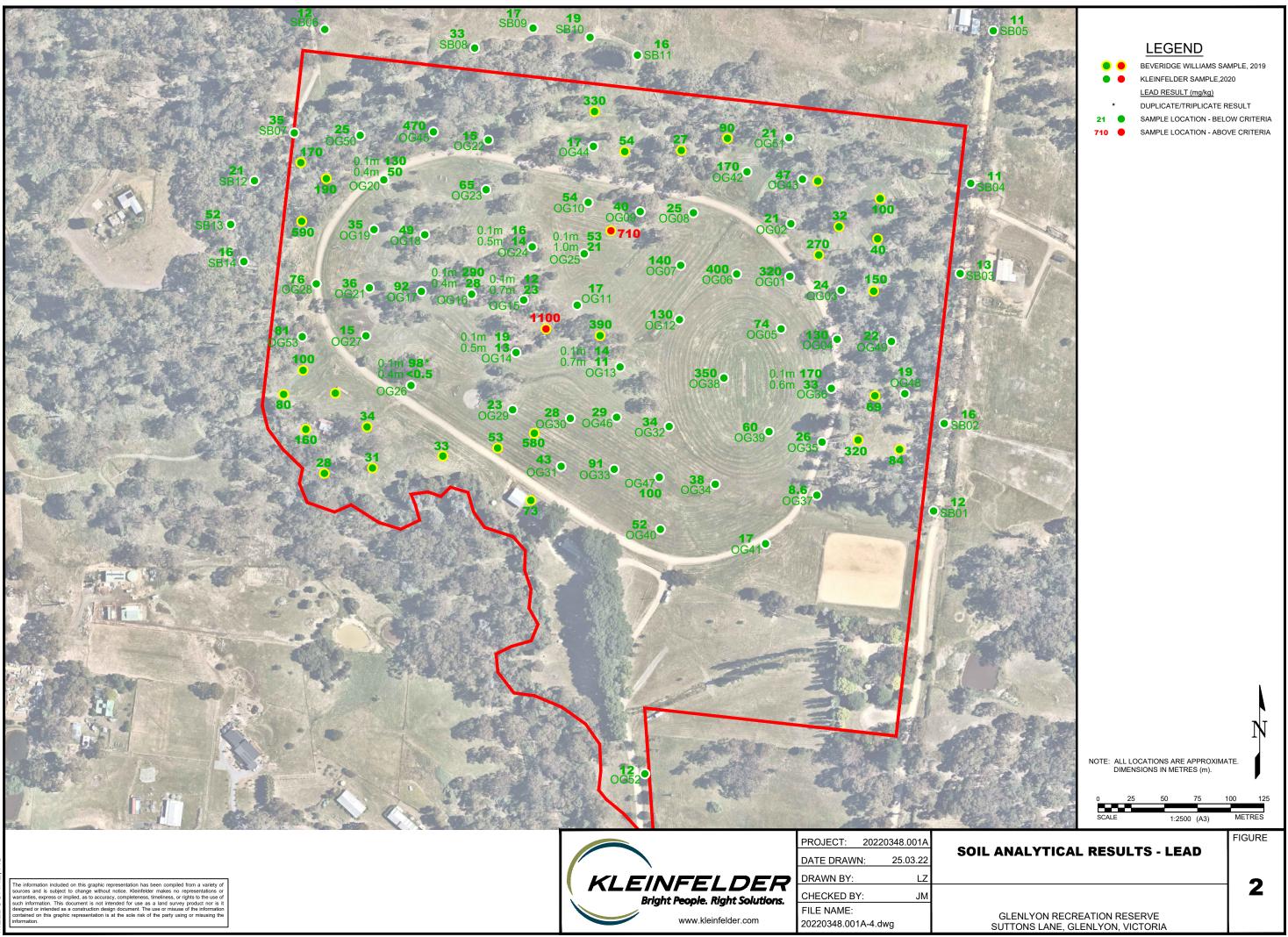
This report cannot be reproduced without the written authorisation of Kleinfelder and then can only be reproduced in its entirety.

The findings and conclusions contained within this report are relevant to the conditions of the site and the state of legislation currently enacted in the relevant jurisdiction in which the site is located as at the date of this report.

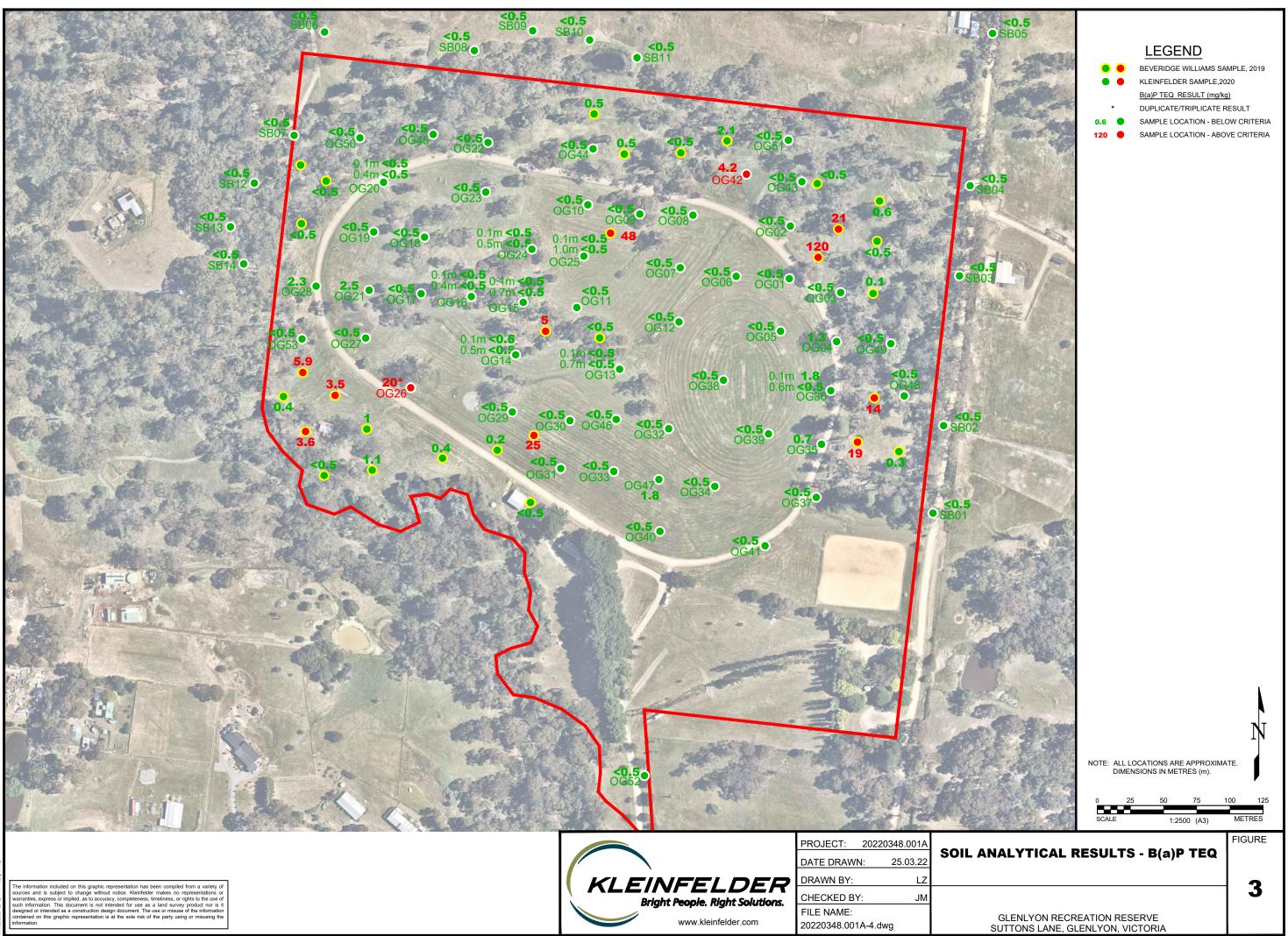
Additionally, the findings and conclusions contained within this report are made following a review of certain information, reports, correspondence, and data noted by methods described in this report including information supplied by the client or its assigns. Kleinfelder has designed and managed the program for this report in good faith and in a manner that seeks to confirm the information provided and test its accuracy and completeness. However, Kleinfelder does not provide guarantees or assurances regarding the accuracy, completeness and validity of information and data obtained from these sources and accepts no responsibility for errors or omissions arising from relying on data or conclusions obtained from these sources.


Any representation, statement, opinion or advice expressed or implied in this report is made on the basis that Kleinfelder, its agents and employees are not liable to any other person taking or not taking (as the case may be) action in respect of any representation, statement, opinion or advice referred to above.

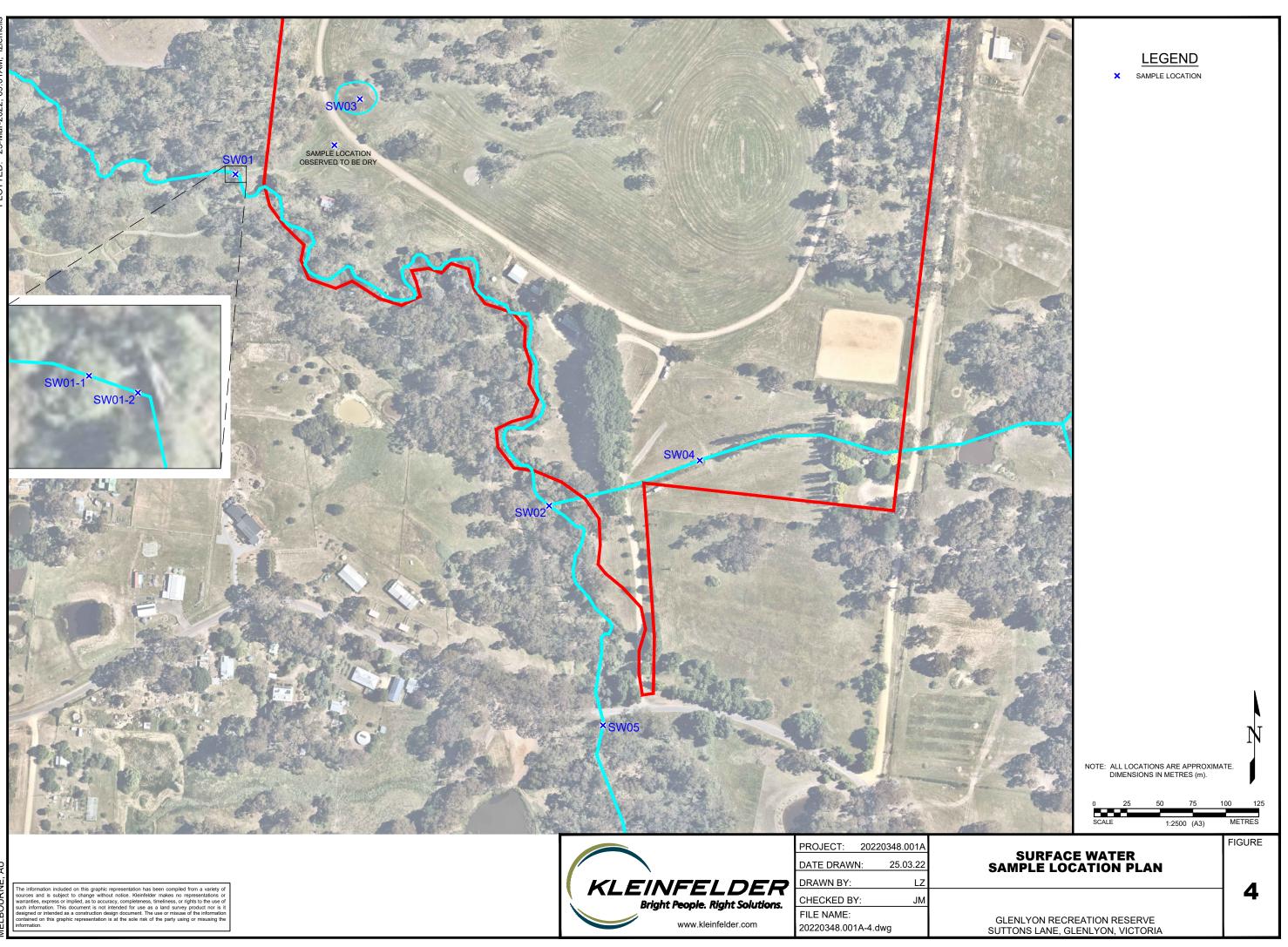
FIGURES



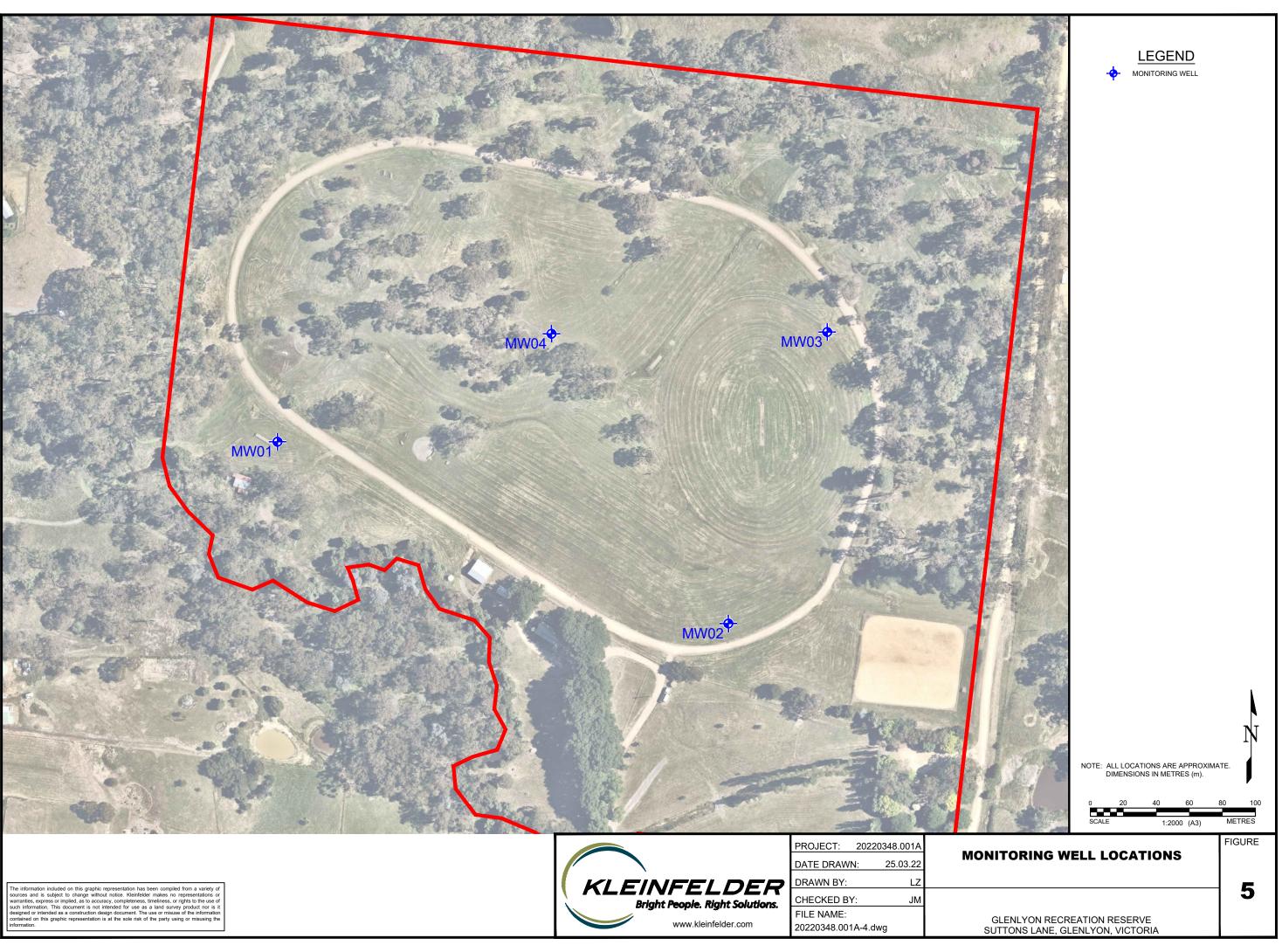
PLOTTED: 25-Mar-2022, 09:01AM, Iziel


CAD FILE: 0:\09_Projects\DELTEK Projects\Regular\2022\20220348.001A - Glenlyon CUP\Figures LAYOUT: 1

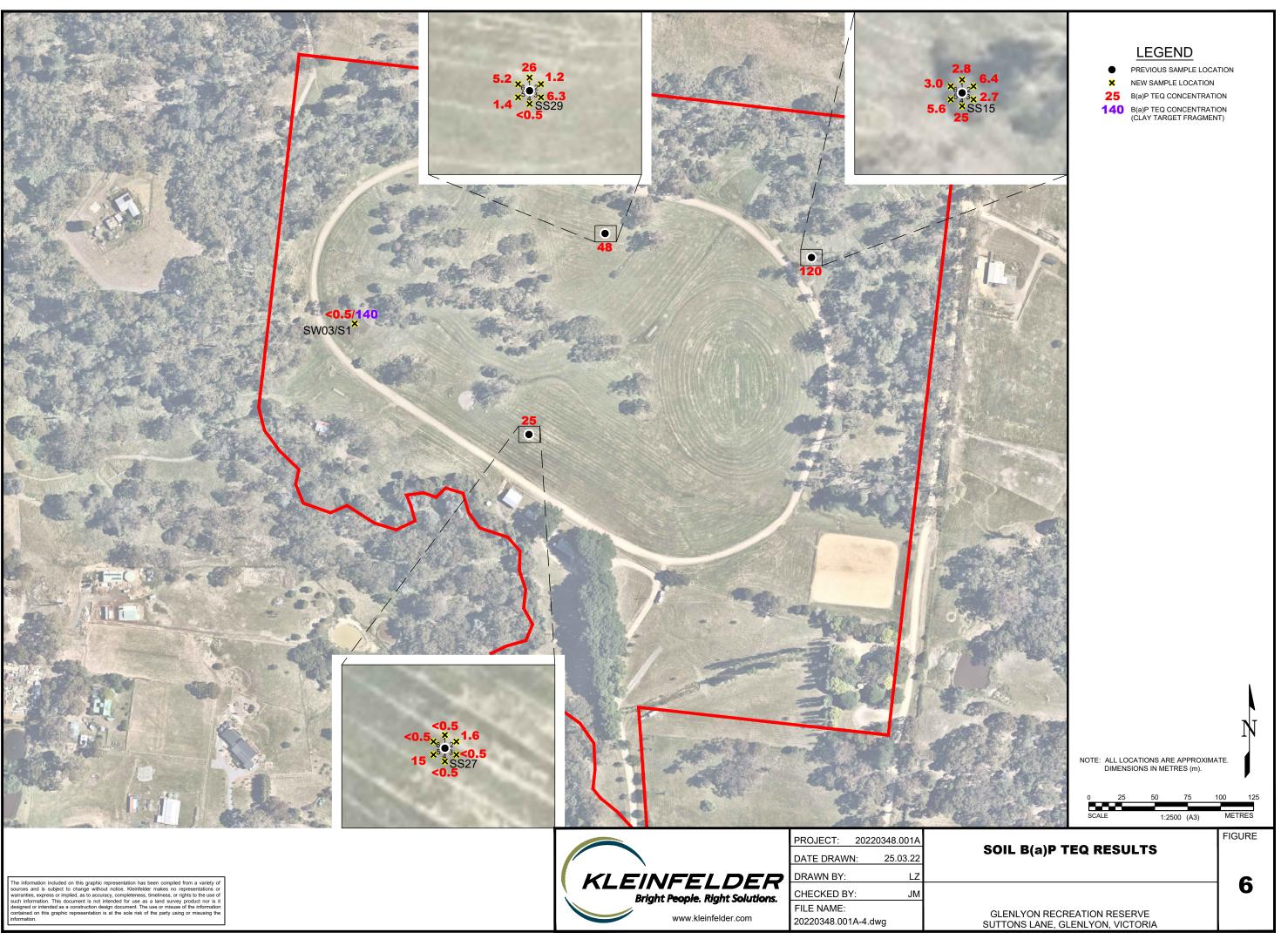
PLOTTED: 25-Mar-2022, 09:01AM, Izier


CAD FILE: 0:/09_Projects/DELTEK Projects/Regular/2022/20220348.001A - Glenlyon CUP/Figures LAYOUT: 2

PLOTTED: 25-Mar-2022, 09:01AM, Izier


CAD FILE: 0:\09_Projects\DELTEK Projects\Regular\2022\20220348.001A - Glenlyon CUP\Figures LAYOUT: 3

CAD FILE: 0:\09_Projects\DELTEK Projects\Regular\2022\20220348.001A - Glenlyon CUP\Figures LAYOUT: 4



s\DELTEK Projects\Reg

00/:0

CAD FILE: MEI BOIL

TABLES

Table 1 Soil Analytical Data - BTEXN, TRH Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						BTEXN					Total P	Petroleum Hydrod	carbons				Total	Recoverable Hydrocart	oons		
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	C ₁₀ - C ₃₆ sum	C ₆ - C ₁₀	$C_6 - C_{10}$ minus BTEX (F1)	>C ₁₀ - C ₁₆	>C ₁₀ - C ₁₆ minus Naphthalene (F2)	>C ₁₆ - C ₃₄	>C ₃₄ - C ₄₀	>C ₁₀ - C ₄₀ (sum)
	LOR		0.1	0.1	0.1	0.2	0.1	0.3	0.5	20	20	50	50	50	20	20	50	50	100	100	100
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ESL - Urban R	Residential/Public Open Space, Fi	ne (NEPM 2013)	65	105	125			45								180	120		1,300	5,600	
EIL - Urbar	n Residential/Public Open Space	(NEPM 2013)							170												
	Residential/Parkland/Public Open														700		1,000		2,500	10,000	
5	SL C - Direct Contact (CRC CARE 2	1 1 ()	120	18.000	5,300			15,000	1.900						5,100	NL	3,800	NL	5,300	7,400	
	Contact Maintanence Workers (C	,	1.100	280.000	85,000			230,000	29,000						82,000	NL	62,000	NL	85,000	120.000	
Sample Name	Sample Date	Start Depth (m)	1,100	200,000	65,000			230,000	29,000						82,000	INL	02,000	INL	85,000	120,000	
SS03	30-Oct-19		< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 1.0	< 0.1	< 20	< 20	55	91	- 1	< 20	< 20	< 20	< 20	120	< 50	120
	30-Oct-19	0.0			-			-	< 0.1	< 20	< 20	65	76	-	< 20	< 20	< 20	< 20	120	< 50	120
SS09	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 1.0	< 0.1	< 20	< 20	< 50	< 50	-	< 20	< 20	< 20	< 20	< 50	< 50	< 50
SS10	30-Oct-19	0.0	-	-	-	-	-	-	< 0.1	< 20	< 20	< 50	63	-	< 20	< 20	< 20	< 20	56	< 50	56
SS11	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 1.0	0.2	< 20	27	340	380	-	< 20	< 20	51	51	580	170	800
SS13	30-Oct-19	0.0	-	-	-	-	-	-	< 0.1	< 20	< 20	150	150	-	< 20	< 20	< 20	< 20	280	< 50	280
SS15	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 1.0	< 0.1	< 20	< 20	1,500	800	-	< 20	< 20	32	32	2,200	160	2,400
SS18	30-Oct-19	0.0	-	-	-	-	-	-	< 0.1	< 20	< 20	< 50	86	-	< 20	< 20	< 20	< 20	90	75	160
SS22	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 1.0	< 0.1	< 20	< 20	< 50	60	-	< 20	< 20	< 20	< 20	63	< 50	63
SS23	30-Oct-19	0.0	-	-	-	-	-	-	< 0.1	< 20	< 20	67	140	-	< 20	< 20	< 20	< 20	150	74	220
SS26	30-Oct-19	0.0	-	-	-	-	-	-	< 0.1	< 20	< 20	< 50	83	-	< 20	< 20	< 20	< 20	87	67	150
SS28 BS10 0.1	30-Oct-19	0.0	< 0.5	< 0.5 < 0.1	< 0.5	< 1.0	< 0.5 < 0.1	< 1.0	< 0.1	< 20 < 20	< 20	120	130 < 50	- < 50	< 20 < 20	< 20 < 20	20 < 50	20 < 50	240 < 100	< 50 < 100	260 < 100
FB03 0.1	08-Apr-20 08-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.3	< 0.5	< 20	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 50	< 100	< 100	< 100
FB05_0.1	08-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.3	< 0.5	< 20	20	< 50 76	< 50 88	< 50 191	< 20	< 20	< 50	< 50	130	< 100	130
MY01 0.1	09-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.3	< 0.5	< 20	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 50	< 100	< 100	< 100
PG02 0.1	09-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.3	< 0.5	< 20	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 50	< 100	< 100	< 100
PV07 0.7	08-Apr-20	0.7	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.3	< 0.5	< 20	< 20	< 50	< 50	< 50	< 20	< 20	< 50	< 50	< 100	< 100	< 100

Notes: - - Not analysed < - Less than laboratory limit of reporting NL - Not limiting mg/kg - Milligrams per kilogram BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene Bold indicates a detection above the laboratory limit of reporting

Table 2 Soil Analytical Data - Inorganics Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						Anions and Cati	ons							
	Analyte		Cyanide (total)	Fluoride	Free Cyanide		Total Nitrogen as N	Total Kjeldahl Nitrogen as N	Nitrogen	Cation Exchange Capacity	Total Organic Carbon	Electrical Conductivity @ 25°C	pН	Clay (<2 µm)
	LOR		5.0	100	5.0	5.0	5.0	10	10	0.05	0.1	10	0.1	1.0
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	meg/100g	%	µS/cm	pH units	%
HIL C	- Recreational (NE	PM 2013)			240									
Sample Name	Sample Date	Start Depth (m)			210	1			1					1
SS03	30-Oct-19	0.0	< 5.0	230	-	-	-	-	-	-	-	-	5.8	-
SS04	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	6.4	-
SS09	30-Oct-19	0.0	< 5.0	150	-	-	-	-	-	-	-	-	6.1	-
SS10	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	6.1	-
SS11	30-Oct-19	0.0	< 5.0	190	-	-	-	-	-	-	-	-	5.7	-
SS13	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	5.9	-
SS15	30-Oct-19	0.0	< 5.0	190	-	-	-	-	-	-	-	-	6.1	-
SS18	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	6.0	-
SS22	30-Oct-19	0.0	< 5.0	140	-	-	-	-	-	-	-	-	6.1	-
SS23	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	5.5	-
SS26	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	5.7	-
SS28	30-Oct-19	0.0	< 5.0	110	-	-	-	-	-	-	-	-	5.3	-
BS10_0.1	08-Apr-20	0.1	< 5.0	180	-	-	-	-	-	-	-	-	6.7	-
FB03_0.1	08-Apr-20	0.1	< 5.0	250	-	-	-	-	-	-	-	-	7.1	-
FB05_0.1	08-Apr-20	0.1	< 5.0	510	-	-	-	-	-	-	-	-	7.0	-
MY01_0.1	09-Apr-20	0.1	< 5.0	290	-	-	-	-	-	-	-	-	7.0	-
OG26_0.1	07-Apr-20	0.1	-	-	-	340	< 5.0	2,600	2,600	-	-	-	-	-
OG28_0.1	07-Apr-20	0.1	-	-	-	-	-	-	-	10	2.5	< 10	5.8	18
OG31_0.1	06-Apr-20	0.1	-	-	-	540	< 5.0	4,800	4,800	-	-	-	-	-
OG40_0.1	06-Apr-20	0.1	-	-	-	600	11	5,500	5,511	-	-	-	-	-
OG49_0.5	06-Apr-20	0.5	-	-	-	-	-	-	-	4.5	2.4	21	4.8	16
OG53_0.1	09-Apr-20	0.1	-	-	-	-	-	-	-	7.1	2.5	940	4.7	19
OG53_0.5	09-Apr-20	0.5	-	-	-	-	-	-	-	2.5	0.4	< 10	5.2	17
PG02_0.1	09-Apr-20	0.1	-	-	< 5.0	-	-	-	-	-	-	-	-	-
PV07_0.7	08-Apr-20	0.7	< 5.0	330	-	-	-	-	-	-	-	-	7.2	-

Notes:

- Not analysed
 - Less than laboratory limit of reporting mg/kg - Milligrams per kilogram

 $\mu S/cm$ - Microsiemens per centimeter **Bold** indicates a detection above the laboratory limit of reporting

Criteria:

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 3 Soil Analytical Data - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

NAME NAME NAME NAME N													Metals											
	Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Chromium VI	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium	Tin	Vanadium	Zinc
	LOR	5.0	5.0	2.0	5.0	2.0	10	0.4	5.0	1.0	5.0	5.0	20	5.0	5.0	0.1	5.0	5.0	2.0	0.2	5.0	10	5.0	5.0
B B		mg/kg	mg/kg									1	1	1										
																								,
		14.000	< 5.0	< 5.0	130	< 5.0	< 10	< 0.2	25	-	6.0	8.0	13,000	130	150	< 0.05	< 5.0	14	< 3.0	< 5.0	21	< 5.0	25	32
	D02 30-Oct-19 0.0	9,800	< 5.0	6.0	79	< 5.0	< 10	< 0.2	88		5.0	5.0	58,000	36	92	< 0.05	< 5.0	11	< 3.0	< 5.0	10	< 5.0	70	17
	SS01A 30-Oct-19 0.0	-	< 10	5.4	160	< 2.0	< 10	< 0.4	26		6.0	11	-	160	180	< 0.1	< 5.0	17	< 2.0	< 0.2	-	< 10	28	33
																							-	
BADD BADD BADD BADD BADD		,					-	-																
	SS06 30-Oct-19 0.0	10,000	< 5.0	< 5.0	110	< 5.0	< 10	< 0.2	15	-	8.0	7.0	12,000	28	320	< 0.05	< 5.0	11	< 3.0	< 5.0	20	< 5.0	9.0	39
Solu Solu Solu Solu S	SS08 30-Oct-19 0.0	1																			-		-	
										< 1.0													-	
B B	SS11 30-Oct-19 0.0	-	< 5.0	6.0	95	< 5.0	< 10	< 0.2	12		< 5.0	9.0	-	320	170	0.06	< 5.0	6.0	< 3.0	< 5.0	-	< 5.0	11	24
	SS13 30-Oct-19 0.0	14,000	< 5.0	9.0	130	< 5.0	< 10	< 0.2	28	-	< 5.0	12	23,000	69	240	< 0.05	< 5.0	11	< 3.0	< 5.0	20	< 5.0	21	28
										- < 1.0														
	SS16 30-Oct-19 0.0		< 5.0	< 5.0	130	< 5.0	< 10	< 0.2	53	-	9.0	12		40	140	< 0.05	< 5.0	17	< 3.0	< 5.0		< 5.0	41	19
	SS18 30-Oct-19 0.0	9,100	< 5.0	< 5.0	79	< 5.0	< 10	< 0.2	27	-	6.0	6.0	8,700	100	140	< 0.05	< 5.0	10	< 3.0	< 5.0	19	< 5.0	15	15
Sing Sing <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										1														
Sect Sect <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										-														
B B B B B B B B B B B B B B B B C B B B C B B B C C B C C B C C C C C C C C C C C C C C C C C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	SS22 30-Oct-19 0.0	-	< 5.0	< 5.0	98	< 5.0	< 10	< 0.2	61	< 1.0	15	9.0	-	54	290	< 0.05	< 5.0	17	< 3.0	< 5.0	-	< 5.0	38	29
Str Str Str <										-														
Sole Sole <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										-														
Sole Bob Col Bob Col Col <td>SS27 30-Oct-19 0.0</td> <td>27,000</td> <td>< 5.0</td> <td>150</td> <td>230</td> <td>< 5.0</td> <td>< 10</td> <td>< 0.2</td> <td>30</td> <td>-</td> <td>7.0</td> <td>16</td> <td>29,000</td> <td>580</td> <td>340</td> <td>0.24</td> <td>< 5.0</td> <td>22</td> <td>5.0</td> <td>< 5.0</td> <td>69</td> <td>< 5.0</td> <td>38</td> <td>58</td>	SS27 30-Oct-19 0.0	27,000	< 5.0	150	230	< 5.0	< 10	< 0.2	30	-	7.0	16	29,000	580	340	0.24	< 5.0	22	5.0	< 5.0	69	< 5.0	38	58
Start Start <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										1														
byb byb b <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td>		,						-	-														-	
CODE Diff Diff <thdif< th=""> Diff Diff D</thdif<>	BS06_0.1 08-Apr-20 0.1	-	-	4.0	-	-	-	< 0.4	18	-	-	6.9	-	16	-	-	-	8.0	-	-	-	-	-	40
Generic Barbon Barbon Control Control <thcontrol< th=""> Contro C</thcontrol<>								-	-												-			
cmm1 bik wo bik wo <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>								-										-			-			
COMPAR PARPE C. C. PARP C. C. C. C.0 C.0 <thc.0< th=""> <thc.0< th=""></thc.0<></thc.0<>	CG03_0.1 08-Apr-20 0.1			< 2.0				< 0.4	14	-		< 5.0	1	9.4	-			< 5.0		-			-	15
Corr Corr <th< td=""><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>1</td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>1</td><td></td></th<>		-	-		-		-			1	-		-			-	-		-		-	-	1	
COMB O I		-	-		-	-	-	-	-	1	-		1		-	-	-		-	-	-	-	-	
COSO 10 MayO2 O.1 C. C.D C.S C.	CG08_0.1 08-Apr-20 0.1	-	-	4.0	-	-	-	< 0.4	35	-	-	13	-	21	-	-	-	23	-	-	-	-	-	50
COLO Observed Observed <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td></th<>					-						-										-	-	-	
CG11 Obder/D O.1 C.1 C.1 S.1 C.1 C.1 S.1 C.1 S.1 C.1 S.1 S.					-					-					-				1		-	-	+ +	-
HBMD O O O O O O O O C <thc< th=""> C C C</thc<>	CG11_0.1 08-Apr-20 0.1	-	-	3.1	-	-	-	< 0.4	25	-	-	13	-	17	-	-	-	15	-	-			-	49
PHO O O C C C C C C C D C	FB01_0.1 08-Apr-20 0.1			3.2				< 0.4				< 5.0		16	-			< 5.0					-	
PB03.0 08/4pc3 0.1 c c 0.4 11 c c 5.0 c c c 0.4 30 c c c c 0.4 30 c 130 c 130 c 130 c <td></td> <td>-</td> <td></td> <td>-</td> <td></td>																					-		-	
MM00101 02/4pr20 0.1 3.1 0.4 7.8 1.7 1.7 2.3 1.5 1.5 1.5 1.5 1.5	FB04_0.1 08-Apr-20 0.1	-	-	2.2	-	-	-	< 0.4	11	-	-	< 5.0	-	13	-	-	-	< 5.0	-	-	-	-	-	9.6
MM03_0.1 024pr20 0.1 - 2.2 - - - 8.6 - 5.7 - <td>MW01_0.1 02-Apr-20 0.1</td> <td></td> <td></td> <td>180</td> <td></td> <td></td> <td></td> <td>< 0.4</td> <td>7.8</td> <td></td> <td></td> <td>17</td> <td></td> <td>23</td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>130</td>	MW01_0.1 02-Apr-20 0.1			180				< 0.4	7.8			17		23				15						130
MM02.01 09Apr20 0.1 4.4 - < <0.0 21 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0					_										_									
MY03 0.1 0-1 - - - - - - - - - - - - - 13 - - - 5.2 - 13 - - 5.2 - - 5.2 - 13 - - 5.2 - 15 - - - 5.2 - 15 - - - 6.6 - - 13 - - - 6.6 - - - 13 - - 15 - - - 6.6 - - 13 - - 15 - - 6.6 - - 13 - - 15 - - - 6.6 - 13 - - 13 - - 13 - - - 6.6 - 13 - 11 - - - 6.5 - - 13 - 11 - - - 14 - 13 - - 14 <td>MY01_0.1 09-Apr-20 0.1</td> <td>-</td> <td>-</td> <td>4.4</td> <td>-</td> <td>-</td> <td>-</td> <td>< 0.4</td> <td>27</td> <td>< 1.0</td> <td>-</td> <td>13</td> <td>-</td> <td>21</td> <td>-</td> <td>< 0.1</td> <td>< 5.0</td> <td>16</td> <td>< 2.0</td> <td>< 0.2</td> <td>-</td> <td>< 10</td> <td>-</td> <td>30</td>	MY01_0.1 09-Apr-20 0.1	-	-	4.4	-	-	-	< 0.4	27	< 1.0	-	13	-	21	-	< 0.1	< 5.0	16	< 2.0	< 0.2	-	< 10	-	30
MMOS 0.1 0.10 0.1 0.10	MY03_0.1 09-Apr-20 0.1	-	-	< 2.0	-	-	-	< 0.4	12	-	-	< 5.0	-	13	-	-	-	5.2	-	-	-	-	-	13
OG1011 Oct-Apr-20 O.1 ··· O.0 ···													1											
06.4pr-20 0.1 4.8 <0.4 29 17 24 9.0 15 0604 0.1 06 Apr-20 0.1 4.2 <0.4 26 14 130 16 16 16 16 16 17 14 14 16 16 16 16 17 14 14 14 14 14 14 14 140 140 140 140 140 140 140 140 140 140 140 140 140 140	OG01_0.1 06-Apr-20 0.1	-	-	6.0	-	-	-	< 0.4	36	-	-	11	-	320	-	-	-	16	-	-	-	-	-	24
OGG_0.1 Of-Apr-20 O.1 ···	OG03_0.1 06-Apr-20 0.1	-		4.8	_	-	-	< 0.4	29	-	-	17	-	24	-	-	-	9.0	-	-	-	-	-	15
OGG_0.1 06-Apr-20 0.1 4.9 <-0.4 44 14 400 26 1.0 27 OG7_0.1 06-Apr-20 0.1 3.0 18 18 140 400 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					-								1		-									
0030_{-1} 0.7Apr-20 0.1 \cdots 7.0 \cdots 1.0 \cdots 21 \cdots 25 \cdots 42 \cdots 1.0 1.0 38 000_{-1} 0.7Apr-20 0.1 \cdots 2.0 \cdots 1.0	OG06_0.1 06-Apr-20 0.1	-	-	4.9	-	-	-	< 0.4	44	-		14	-	400	-	-	-	26	-	-	-	-	-	27
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OG08_0.1 07-Apr-20 0.1			7.0	-					-	<u> </u>	21			-									38
OG11_0.5 02-Apr-20 0.5 9.4 <-0.4 32 16 17 10 27 OG12_0.1 06-Apr-20 0.1 2.1 - 10 10 10 10 27 OG12_0.1 06-Apr-20 0.1 2.1 10 130 10 10 26 26 OG13_0.1 06-Apr-20 0.1 10					-	1				1			1		-								1	
OG13_0.1 06-Apr-20 0.1 - < 2.0 - - < 4.4 4.2 - 14 - - 28 - - - 73 OG13_0.7 06-Apr-20 0.7 - - - 42 - - 18 - 14 - - 28 - - - 73 OG13_0.7 06-Apr-20 0.7 - < < 14 - - 28 - - 73 0613_0.7 06-Apr-20 0.7 -	OG11_0.5 02-Apr-20 0.5	-	-	9.4		-	-	< 0.4	32	-		16	-	17		-	-	10	-	-	-	-	-	27
OG13_0.7 06-Apr-20 0.7 - - - - - - 12 - 11 - - 12 - - 89 0G14_0.1 07-Apr-20 0.1 - 12 - - 17 - - 19 - - 6.2 - - - 89					-						-				-									
	OG13_0.7 06-Apr-20 0.7			< 2.0				< 0.4	26	1		12		11				22					-	89
	OG14_0.1 07-Apr-20 0.1 OG14_0.5 07-Apr-20 0.5			12 8.5	-	-	-	< 0.4 < 0.4	20	-	-	< 5.0 5.0	-	19 13	-	-	-	6.2 6.9	-	-		-	-	20 19

Table 3 Soil Analytical Data - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

														Metals											
	Analyte		Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Chromium VI	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium	Tin	Vanadium	Zinc
	LOR		5.0	5.0	2.0	5.0	2.0	10	0.4	5.0	1.0	5.0	5.0	20	5.0	5.0	0.1	5.0	5.0	2.0	0.2	5.0	10	5.0	5.0
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	- Recreational (NEPI				300		90	20,000	90		300	300	17,000		600	19,000	80		1,200	700					30,000
Sample Name	dential/Public Open S Sample Date	Start Depth (m)			100					500			120		1,100				120						260
OG15 0.1	07-Apr-20	0.1	-	-	2.8	-	-	-	< 0.4	15	-		< 5.0	-	12	-	-	-	< 5.0	-	-	-	-	-	15
OG15_0.7	07-Apr-20	0.7	-	-	4.1	-	-	-	< 0.4	27	-	-	6.0	-	23	-	-	-	8.0	-	-	-	-	-	21
OG16_0.1	07-Apr-20	0.1	-	-	2.9	-	-	-	< 0.4	19	-	-	5.4	-	290	-	-	-	6.9	-	-	-	-	-	22
OG16_0.4 OG17 0.1	07-Apr-20 07-Apr-20	0.4	-	-	2.3	-	-	-	< 0.4	22	-	-	< 5.0	-	28 92	-	-	-	6.9 5.5	-	-	-	-	-	19 14
OG18_0.1	07-Apr-20	0.1	-	-	2.3	-	-	-	< 0.4	15	-	-	< 5.0	-	49	-	-	-	5.4	-	-	-	-	-	16
OG19_0.1 OG20 0.1	07-Apr-20 07-Apr-20	0.1 0.1	-	-	5.4 2.3	-	-	-	< 0.4 < 0.4	27	-	-	8.3 < 5.0	-	35 130	-	-	-	12 7.3	-	-	-	-	-	24 12
OG20_0.1 OG20_0.4	07-Apr-20 07-Apr-20	0.1	-	-	6.8	-	-	-	< 0.4	47	-	-	< 5.0 12	-	50	-	-	-	14	-	-	-	-	-	20
OG21_0.1	06-Apr-20	0.1	-	-	4.9	-	-	-	< 0.4	28	-	-	11	-	36	-	-	-	14	-	-	-	-	-	22
OG22_0.1	07-Apr-20	0.1	-	-	< 2.0	-	-	-	< 0.4	12	-	-	8.5	-	15	-	-	-	6.1	-	-	-	-	-	33
OG23_0.1 OG24_0.1	07-Apr-20 07-Apr-20	0.1 0.1	-	-	3.1 2.5	-	-	-	< 0.4 < 0.4	30 16	-	-	8.8 < 5.0	-	65 16	-	-	-	15 < 5.0	-	-	-	-	-	22 21
OG24_0.5	07-Apr-20	0.5	-	-	2.5	-	-	-	< 0.4	19	-	-	5.1	-	14	-	-	-	5.0	-	-	-	-	-	17
OG25_0.1	07-Apr-20	0.1	-	-	3.5	-	-	-	< 0.4	78	-	-	24	-	53	-	-	-	44	-	-	-	-	-	39
OG25_1.0 OG26_0.1	07-Apr-20 07-Apr-20	1.0 0.1	-	-	4.8	-	-	-	< 0.4 < 0.4	81 20	-	-	22 7.5	-	21 98 *	-	-	-	59 10	-	-	-	-	-	39 42
OG27 0.1	07-Apr-20	0.1	-	-	3.8	-	-	-	< 0.4	26	-	-	7.8		15	-	-	-	14	-	-	-	-	-	19
OG28_0.1	07-Apr-20	0.1	-	-	7.2	-	-	-	< 0.4	49	-	-	17	30,000	76	-	-	-	34	-	-	-	-	-	43
OG29_0.1	06-Apr-20	0.1	-	-	3.8 6.7	-	-	-	< 0.4	38	-	-	11	-	23	-	-	-	25	-	-	-	-	-	47
OG30_0.1 OG31 0.1	06-Apr-20 06-Apr-20	0.1 0.1	-	-	49	-	-	-	< 0.4 < 0.4	54 32	-	-	18 15	-	28 43	-	-	-	40 23	-	-	-	-	-	60 69
OG32_0.1	06-Apr-20	0.1	-	-	5.1	-	-	-	< 0.4	23	-	-	7.0	-	34	-	-	-	9.3	-	-	-	-	-	29
OG33_0.1	06-Apr-20	0.1	-	-	3.5	-	-	-	< 0.4	21	-	-	13	-	91	-	-	-	19	-	-	-	-	-	27
OG34_0.1 OG35 0.1	06-Apr-20 06-Apr-20	0.1	-	-	< 2.0 5.6	-	-	-	< 0.4	10 12	-	-	< 5.0 5.5	-	38 26	-	-	-	< 5.0 7.4	-	-	-	-	-	12 18
OG36_0.1	06-Apr-20	0.1	-	-	9.1	-	-	-	< 0.4	27	-	-	11	-	170	-	-	-	17	-	-	-	-	-	28
OG36_0.6	06-Apr-20	0.6	-	-	10*	-	-	-	< 0.4	27	-	-	12	-	33	-	-	-	11	-	-	-	-	-	23
OG37_0.1 OG38 0.1	06-Apr-20 06-Apr-20	0.1	-	-	< 2.0 3.0	-	-	-	< 0.4	6.8 130	-	-	< 5.0 44	-	8.6 350	-	-	-	< 5.0 100	-	-	-	-	-	9.8 100
OG39_0.1	06-Apr-20	0.1	-	-	3.2	-	-	-	< 0.4	39	-	-	11	-	60	-	-	-	19	-	-	-	-	-	34
OG40_0.1	06-Apr-20	0.1	-	-	5.0	-	-	-	< 0.4	27	-	-	13	-	52	-	-	-	17	-	-	-	-	-	35
OG41_0.1 OG42 0.1	06-Apr-20 07-Apr-20	0.1	-	-	4.5	-	-	-	< 0.4	29 170	-	-	10 30	-	17	-	-	-	15 72	-	-	-	-	-	29 74
OG42_0.1 OG43_0.1	07-Apr-20 07-Apr-20	0.1	-	-	< 2.0	-	-	-	< 0.4 < 0.4	79		-	9.2		170 47	-	-	-	26	-	-	-	-	-	25
OG44_0.1	07-Apr-20	0.1	-	-	2.7	-	-	-	< 0.4	130	-	-	26	-	17	-	-	-	69	-	-	-	-	-	71
OG45_0.1	07-Apr-20	0.1	-	-	4.6	-	-	-	< 0.4 < 0.4	60	-	-	18	-	470	-	-	-	28	-	-	-	-	-	36 34
OG46_0.1 OG47 0.1	06-Apr-20 06-Apr-20	0.1 0.1	-	-	4.6	-	-	-	< 0.4	43 33	-	-	15 18	-	29 100	-	-	-	28 21	-	-	-	-	-	34 56
OG48_0.1	06-Apr-20	0.1	-	-	2.0	-	-	-	< 0.4	17	-	-	6.9	-	19	-	-	-	< 5.0	-	-	-	-	-	13
OG49_0.1	06-Apr-20	0.1 0.5	-	-	2.8	-	-	-	< 0.4	17	-	-	12	-	22	-	-	-	6.5	-	-	-	-	-	12
OG49_0.5 OG50 0.1	06-Apr-20 09-Apr-20	0.5	-	-	2.2	-	-	-	- < 0.4	- 67	-	-	- 12	14,000	- 25	-	-	-	- 23	-	-	-	-	-	- 22
OG51_0.1	09-Apr-20	0.1	-	-	2.4	-	-	-	< 0.4	87	-	-	13	-	21	-	-	-	26	-	-	-	-	-	28
OG52_0.1	09-Apr-20	0.1	-	-	< 2.0	-	-	-	< 0.4	13	-	-	< 5.0	-	12	-	-	-	< 5.0	-	-	-	-	-	22
OG53_0.1 OG53_0.5	09-Apr-20 09-Apr-20	0.1 0.5	-	-	12	-	-	-	< 0.4	37	-	-	13	23,000 19,000	81	-	-	-	18	-	-	-	-	-	27
PV01_0.1	09-Apr-20 08-Apr-20	0.5	-	-	6.2	-	-	-	< 0.4	35	-	-	9.9		52	-	-	-	23	-	-	-	-	-	38
PV03_0.1	08-Apr-20	0.1	-	-	180	-	-	-	< 0.4	25	-	-	22	-	59	-	-	-	36	-	-	-	-	-	98
PV05_0.1	08-Apr-20	0.1 0.7	-	-	79	-	-	-	< 0.4	27	-	-	17	-	58	-	-	-	22	-	-	-	-	-	130
PV07_0.7 PV10_0.1	08-Apr-20 08-Apr-20	0.7	-	-	5.3 8.0	-	-	-	< 0.4 < 0.4	25 30	< 1.0	-	7.6	-	17 45	-	< 0.1	< 5.0	14 18	< 2.0	< 0.2	-	< 10	-	37 94
SD01	09-Apr-20	0.0	-	-	35 *	-	-	-	< 0.4	17	-	-	10	-	16	-	-	-	11	-	-	-	-	-	39
SD02	09-Apr-20	0.0	-	-	2.3	-	-	-	< 0.4	7.6	-		< 5.0	-	6.3			-	< 5.0	-			-	-	12

 SD02
 09-Apr-20
 0.0
 2.3
 <</th>
 0.4
 7.6

 Notes:
 Version

Criteria: National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 3A Soil Analytical Data - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

											Ме	tals								
	Analyte		Arsenic	Beryllium	Boron	Cadmium	Chromium	Chromium VI	Cobalt	Copper	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc
	LOR		2.0	2.0	10	0.4	5.0	1.0	5.0	5.0	20	5.0	5.0	0.1	5.0	5.0	2.0	0.2	10	5.0
	LOR Units HIL A - Residential (NEPM 2013)		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL A	- Residential (NEPM	4 2013)	100	60	4,500	20		100	100	6,000		300	3,800	40		400	200			7,400
EIL - Urban Resid	lential/Public Open S	Space (NEPM 2013)	100				500			120		1,100				120				260
Sample Name	Sample Date	Start Depth (m)																		
PG01_0.1	09-Apr-20	0.1	10 *	-	-	< 0.4	62 *	-	-	13	-	17	-	-	-	25	-	-	-	46
PG02_0.1	09-Apr-20	0.1	5.2	< 2.0	< 10	< 0.4	21	< 1.0	5.3	9.4	-	31	320	< 0.1	-	10	< 2.0	-	-	89
PG03_0.1	09-Apr-20	0.1	4.5	-	-	< 0.4	23	-	-	14	-	20	-	-	-	14	-	-	-	44
PG04_0.1	09-Apr-20	0.1	4.3	-	-	< 0.4	22	-	-	8.7	-	27	-	-	-	12	-	-	-	39
PG05_0.1	09-Apr-20	0.1	6.2	-	-	< 0.4	22	-	-	11	-	22	-	-	-	11	-	-	-	47

Notes: - - Not analysed < - Less than laboratory limit of reporting mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting "*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50% Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) RPD - Relative Percentage Difference

Criteria: National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 3B Soil Analytical Data - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

										Metals							
	Analyte		Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Vanadium	Zinc
	LOR		2.0	2.0	2.0	10	0.4	5.0	5.0	5.0	5.0	5.0	0.1	5.0	2.0	5.0	5.0
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL A	- Residential (NEP	M 2013)	100		60	4,500	20		100	6,000	300	3,800	40	400	200		7,400
EIL - Urban Resid	Urban Residential/Public Open Space (NEPM 201							500		120	1,100			120			260
Sample Name	Sample Date	Start Depth (m)															
AV01	03-Mar-21	0.0	6.0	100	< 1.0	<50	< 1.0	25	4.0	10	59	45	<0.1	14	<5	26	21
AV02	03-Mar-21	0.0	15	220	1.0	<50	< 1.0	33	16	16	318	660	<0.1	28	<5	38	36

Notes:

- - Not analysed

< - Less than laboratory limit of reporting

mg/kg - Milligrams per kilogram

Bold indicates a detection above the laboratory limit of reporting "*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50%

Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) RPD - Relative Percentage Difference

Criteria:

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 3C Soil Analytical Data - Metals Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

	Analyte		Metals
			Lead
	LOR		5.0
	Units		mg/kg
HIL A	- Residential (NEP	M 2013)	300
Sample Name	Sample Date	Start Depth (m)	
SB01_0.15	05-Jan-21	0.15	12
SB02_0.1	05-Jan-21	0.1	16
SB03_0.15	05-Jan-21	0.15	13
SB04_0.1	05-Jan-21	0.1	11
SB05_0.1	05-Jan-21	0.1	11
SB06_0.1	05-Jan-21	0.1	12
SB07_0.1	05-Jan-21	0.1	35
SB08_0.1	05-Jan-21	0.1	33
SB09_0.1	05-Jan-21	0.1	17
SB10_0.1	05-Jan-21	0.1	19
SB11_0.1	05-Jan-21	0.1	16
SB12_0.1	05-Jan-21	0.1	21
SB13_0.1	05-Jan-21	0.1	52
SB14_0.1	05-Jan-21	0.1	16

Notes: mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting

Criteria:

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 4 Soil Analytical Data - PAHs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

Number Number<													Poly	cyclic Aromatic Hydroca	arbons							
Note No No No No No<		Analyte		Naphthalene	Acenaphthylen	e Acenaphthene	e Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH		
District		LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Difference weight wei						mg/kg		mg/kg		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
						-			1													3.0
							-															
MALAR MURAR MURAR <th< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						_																
box box <th>HSL - Direct Contact</th> <th>t Maintanence Workers</th> <th>(CRC CARE 2011)</th> <th>29,000</th> <th></th>	HSL - Direct Contact	t Maintanence Workers	(CRC CARE 2011)	29,000																		
				< 0.1	< 0.1	0.2	< 0.1	0.0	0.2	2.5	3.0	32	23	3.6	3.4	3.6	23	0.9	27	30	EQ	E 0
Bit Sole																						
BOOM BOOM <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						-																
b c						-				_												
BOOM BOOM <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>< 0.1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>< 0.1</td><td></td><td></td><td></td><td></td><td>-</td></th<>				-	-	-			-	< 0.1						-	< 0.1					-
Sold Sold <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													-									
model Sole Sole <t< td=""><td>SS09</td><td>30-Oct-19</td><td>0.0</td><td></td><td>< 0.1</td><td></td><td>< 0.1</td><td></td><td>< 0.1</td><td>0.2</td><td>0.2</td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.2</td><td>0.1</td><td>< 0.1</td><td>0.1</td><td>1.2</td><td>0.2</td><td></td></t<>	SS09	30-Oct-19	0.0		< 0.1		< 0.1		< 0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	< 0.1	0.1	1.2	0.2	
Sole Sole <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>				-						-												-
Both Both <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>					-																-	
BADL BADL <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															-							
Book Book State S												-		-	-	-						
SDM MDH MD M	SS16	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1
mom mom des des <td></td>																						
BBD BDD QL CAL CAL <thcal< th=""> <thcal< th=""> <thcal< th=""></thcal<></thcal<></thcal<>																						
Sold Sold <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
BD XXXX Col. C										_												
Star Matrix Star All Curr Curr <t< td=""><td>SS23</td><td>30-Oct-19</td><td>0.0</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>0.3</td><td>0.3</td><td>0.3</td><td>0.2</td><td></td><td></td><td>0.4</td><td>0.2</td><td></td><td></td><td>2.6</td><td></td><td>0.6</td></t<>	SS23	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.3	0.3	0.2			0.4	0.2			2.6		0.6
State State <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
9 9																			-			
bb bb<				-																		-
90 2000 03 030																						
bb.1 99/29 61. 63.<	SS30	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1
No. Object Cont Cost Cost <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																						
Direction State is an analysis Constrained is an analysis Constrained is analysis																						
Good 3. Bob Part 6.5 6.5 6.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
1 0.00 0.																						
COR 1 COR - COS - COS </td <td></td>																						
Bit Col. Bit Col. Cab.	_																					
0000 0000 <th< td=""><td>CG06_0.1</td><td>08-Apr-20</td><td>0.1</td><td>< 0.5</td><td>< 0.5</td><td>0.6</td></th<>	CG06_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
CEG_0.5 0.6.p-20 0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																						
COB 0.1 Observal 0.1 < C45 C45 < C45 < C45 C45 C45 C45 C45 C45 C45 C45 C45 C45 < C45	· · · · · = ·	08-Apr-20	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
GG10.7 Object 20 Object 20 Object 20 Cols	_																					
Bit 0.1 Objec 3 0.1 c 0.5 <										_												
PR0.01 ObsApe20 0.1 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	CG11_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PR02_01 08/4p/30 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5										_												
Head 11 0 #Age-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.5	FB02_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PB05 0.1 0.6.3 c.0.3 c.0.3 c.0.5 c.																						
MW02.01 02.4pr-20 0.1 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5 < 6.5	FB05_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
MW03_01 024/pr20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5																						
MY01_01 094/pr20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5																						
MY02 01 09-Apr20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		09-Apr-20		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5		< 0.5		< 0.5	< 0.5					
MMM 01 04-by-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0																						
OGD_01 06/4pr20 0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	MY04_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
0602.01 07.4pr20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5																						
OGG4_0.1 06-Apr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	OG02_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OGG5_0.1 O6-Apr-20 O.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5						_				_												
OG66_01 06-Åpr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5						_																
OGOB_0.1 07-Apr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	OG06_0.1	06-Apr-20	0.1																			
OGO9_0.1 07-Apr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5																						
OG11_0.5 02-Apr-20 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	OG09_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.5	< 0.5	0.6
OG12 0.1 06-Apr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5						_				_												
OG13_0.7 06-Apr-20 0.7 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5										_												
OG14_0.1 07-Apr-20 0.1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	_	06-Apr-20																				
	· · · · · = ·		-			_				_												
						_				_												

Table 4 Soil Analytical Data - PAHs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

												Poly	cyclic Aromatic Hydroca	arbons							
	Analyte																				
	, undig co		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (Half LOR)
	LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Units	12)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	 Recreational (NEPM 201 al/Public Open Space, Coa 	<u>,</u>													33				300	3.0	3.0
	lential/Public Open Space	. ,	170																		
HSL C - D	irect Contact (CRC CARE	2011)	1,900																		
	t Maintanence Workers (C	,	29,000																		
Sample Name OG15 0.1	Sample Date 07-Apr-20	Start Depth (m) 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG15_0.7	07-Apr-20	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG16_0.1 OG16_0.4	07-Apr-20 07-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
OG16_0.4 OG17_0.1	07-Apr-20	0.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG18_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG19_0.1 OG20 0.1	07-Apr-20 07-Apr-20	0.1	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
OG20_0.4	07-Apr-20	0.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG21_0.1 OG22 0.1	06-Apr-20 07-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	0.6 < 0.5	< 0.5	1.9 < 0.5	1.9 < 0.5	1.6 < 0.5	1.1 < 0.5	2.1 < 0.5	2.0 < 0.5	1.9 < 0.5	0.6 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	14 < 0.5	2.5 < 0.5	2.7 0.6
OG22_0.1 OG23_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG24_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG24_0.5 OG25 0.1	07-Apr-20 07-Apr-20	0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
OG25_1.0	07-Apr-20	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG26_0.1 OG26_0.4	07-Apr-20 07-Apr-20	0.1	< 0.5 < 0.5	< 0.5	1.0 * < 0.5	< 0.5	7.1 *	1.4 * < 0.5	25 * < 0.5	23 * < 0.5	15 * < 0.5	<u>11 *</u> < 0.5	12 * < 0.5	11 * < 0.5	13 * < 0.5	9.2 * < 0.5	2.2 * < 0.5	8.4 * < 0.5	139 * < 0.5	20 * < 0.5	20 * 0.6
OG20_0.4 OG27_0.1	07-Apr-20	0.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG28_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.2	2.0	1.6	1.0	1.6	1.7	1.7	1.2	< 0.5	1.3	14	2.3	2.5
OG29_0.1 OG30 0.1	06-Apr-20 06-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.6
OG31_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG32_0.1 OG33 0.1	06-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
OG33_0.1 OG34_0.1	06-Apr-20 06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG35_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	0.9	< 0.5	0.6	< 0.5	< 0.5	< 0.5	2.2	0.7	1.0
OG36_0.1 OG36_0.6	06-Apr-20 06-Apr-20	0.1	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7 < 0.5	0.8 < 0.5	1.3 < 0.5	0.6 < 0.5	1.1 < 0.5	1.5 < 0.5	1.4 < 0.5	0.8 < 0.5	< 0.5	1.1 < 0.5	9.3 < 0.5	1.8 < 0.5	2.1 0.6
OG37_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG38_0.1 OG39 0.1	06-Apr-20 06-Apr-20	0.1	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
OG39_0.1 OG40_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG41_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG42_0.1 OG42_0.4	07-Apr-20 07-Apr-20	0.1 0.4	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	1.4 < 0.5	< 0.5	4.9 < 0.5	4.5 < 0.5	3.0 < 0.5	1.7 < 0.5	2.7 < 0.5	2.3 < 0.5	2.5 < 0.5	1.8 < 0.5	0.8 < 0.5	1.7 < 0.5	27 < 0.5	4.2 < 0.5	4.2 0.6
OG43_0.1	07-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG44_0.1 OG45 0.1	07-Apr-20 07-Apr-20	0.1	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.6
OG45_0.1 OG46_0.1	07-Apr-20 06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG47_0.1	06-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5	2.4	2.3	1.8	1.0	1.2	1.3	1.3	0.9	< 0.5	0.8	14	1.8	2.0
OG48_0.1 OG49 0.1	06-Apr-20 06-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.6
OG50_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
OG51_0.1 OG52 0.1	09-Apr-20 09-Apr-20	0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.6
OG52_0.1 OG53_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 2.4 *	< 0.5	0.6
PV01_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PV03_0.1 PV05 0.1	08-Apr-20 08-Apr-20	0.1	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	0.6
PV07_0.7	08-Apr-20	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PV10_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
SD01 SD02	09-Apr-20 09-Apr-20	0.0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	0.6
5002	05 API 20	0.0	. 0.5		. 0.5		. 0.5	. 0.0	. 0.5	- 0.5	. 0.5			. 0.5		- 0.5		. 0.5	- 0.5	. 0.0	

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting "*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50% Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) RPD - Relative Percentage Difference

Table 4A Soil Analytical Data - PAHs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

												Poly	cyclic Aromatic Hydroca	rbons							
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (Half LOR)
	LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL A	- Residential (NEPM 20	013)																	300	3.0	3.0
ESL - Urban Residentia	al/Public Open Space, C	Coarse (CRC Care 39)													33						
EIL - Urban Resid	ential/Public Open Spa	ce (NEPM 2013)	170																		
HSL A - D	irect Contact (CRC CAF	RE 2011)	1,400																		
HSL - Direct Contact	t Maintanence Workers	(CRC CARE 2011)	29,000																		
Sample Name	Sample Date	Start Depth (m)																			<u> </u>
PG01_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PG02_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PG03_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PG04_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
PG05_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting "*" denotes duplicate/triplicate sample result adopted for analytical use due to RPD >50% Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) RPD - Relative Percentage Difference

Table 4B Soil Analytical Data - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

												Polyc	yclic Aromatic Hydrocarl	bons							
	Analyte		Naphthalene	Acenaphthylene	e Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	e Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	e Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	e Benzo[a]pyrene TEQ (Half LOR)
	LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL A - Re	esidential (NEPM	1 2013)																	300	3.0	3.0
HSL A - Direct	t Contact (CRC (CARE 2011)	1,400																		
		0 m - <1 m	5.0																		
HSL (Vapour Intrusion)) A & B - CLAY	1 m - <2 m	NL																		
(NEPM 2013	·	2 m - <4 m	NL																		
(12.11.201		4 m +	NL																		
Sample Name Sa	Sample Date	Start Depth (m)	INL.																		
	05-Jan-21	0.15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
SB04_0.1	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
SB05_0.1	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
SB06_0.1	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
SB14_0.1	05-Jan-21	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NL - Not limiting mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting

Table 4C Soil Analytical Data - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

												Polycy	clic Aromatic Hydrocarb	oons							
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH		Benzo[a]pyrene TEQ (Half LOR)
	LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL A - R	Residential (NEPM	4 2013)																	300	3.0	3.0
HSL A - Direct	ct Contact (CRC C	CARE 2011)	1,400																		
		0 m - <1 m	5.0																		
HSL (Vapour Intrusion	n) A & B - CLAY	1 m - <2 m	NL																		
(NEPM 201	13)	2 m - <4 m	NL																		
		4 m +	NL																		
Sample Name S	Sample Date	Start Depth (m)																			
AV01	03-Mar-21	0.0	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 1.4	< 0.7	2.8
AV02	03-Mar-21	0.0	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 1.4	< 0.7	2.8

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NL - Not limiting mg/kg - Milligrams per kilogram Bold indicates a detection above the laboratory limit of reporting

										Polycyc	lic Aromatic Hydrocart	oons													Poly	cyclic Aromat	atic Hydrocarbons	S				
Analyte	Naphthalen	e Acenaphthylene	Acenaphthene	: Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthen	e Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	e Dibenz[a,h]anthracen	e Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (Half LOR)	Naphth ene	al Acenapht hylene	Acenapht hene	ne Phenanth rene	Anthrace Fluora ne ene	^{nth} Pyrene Cł	nrysene o[a]a	anthra)[b]fluorar	o[k]fluorannzo[a]p	pyre[1,2,3-c,c	,d]z[a,h]anthıo[g,h,i]p	er Total p PAH	enzo[a] berizo[a] pyrene TEQ TEQ (Half (Zero) LOD)
LOR	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.5	0.5	0.5 0.5	0.5	0.5 0.	.5 0.5	0.5 0.5	0.5	0.5 0.5	0.5	0.5 0.5
Units	mg/kg	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	ma/ka ma/k	a ma/ka	ma/ka ma/k	a ma/ka r	na/ka ma/	/ka ma/ka	ma/ka ma/k	ka ma/ka	i ma/ka ma/ka	ma/ka n	na/ka ma/ka
HIL C - Recreational (NEPM 2013)																	300	3.0	3.0				-								300	3.0 3.0
EIL - Urban Residential/Public Open Space (NEPM 2013)	170																			170												
Sample Name Sample Date Start Depth (m)																															- I I -	
S1 16-Dec-21 0.0	2.3	< 0.5	14	5.0	57	8.7	120	120	79	70	80	71	89	54	18	100	888	140	140	2.3		14 5.0	57	8.7 120	120	79 7	70 80	71 89	9 54	18 100	888	140 140
SS15 1 0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	1.0	< 0.5	3.1	2.9	1.3	0.8	3.9	1.6	2.0	1.1	< 0.5	0.8	19	2.8	3.0	< 0.5	< 0.5	< 0.5 < 0.	5 1.0	< 0.5 3.1	2.9	1.3 0.).8 3.9	1.6 2.0	0 1.1	< 0.5 0.8	19	2.8 3.0
SS15_2_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	3.4	0.8	9.4	8.6	4.4	2.8	11	4.6	6.1 2.0	3.5	0.9	2.3	58	9.3 2.7	9.3 2.9	d < 0.5	< 0.5	< 0.5 < 0.	5 2.1	0.6 6.2	5.8	3.0 1.	9 8.1	3.8 4.8	3 2.2	< 0.5 1.5	40	64 67
SS15_3_0.0-0.1 16-Dec-21 0.0 Lab	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 0.5	3.0	2.8	1.1	0.7	3.1	1.6	2.0	1.1	< 0.5	0.7	17	2.7	2.9	ort < 0.5	< 0.5	< 0.5 < 0.	5 0.9	< 0.5 3.0	2.8	1.1 0.	.7 3.1	1.6 2.0	J 1.1	< 0.5 0.7		2.7 2.9
SS15_4_0.0-0.1 16-Dec-21 0.0 report	t < 0.5	< 0.5	1.3	0.5	8.3	2.4	26	23	10	6.2	29	13	17	8.4	2.1	5.2	152	25	25 8	503 < 0.5	< 0.5	1.3 0.5	8.3	2.4 26	23	10 6.	.2 29	13 17	7 8.4		152	25 25
SSI5 2 0.0-0.1 16-Dec-21 0.0 Lab SSI5 3 0.0-0.1 16-Dec-21 0.0 report SSI5 4 0.0-0.1 16-Dec-21 0.0 report SSI5 5 0.0-0.1 16-Dec-21 0.0 854503	3 < 0.5	< 0.5	< 0.5	< 0.5	1.3	< 0.5	5.0	4.6	2.1	1.3	7.1	2.5	3.6	2.1	0.7	1.4	32	5.6	5.6	2 < 0.5	< 0.5	< 0.5 < 0.	5 1.3	< 0.5 5.0	4.6	2.1 1.	.3 7.1	2.5 3.6	2.1 د	0.7 1.4	32	5.6 5.6
SS15 6 0.0 1 6-Dec-21 0.0 SS27 1 0.0 1 6-Dec-21 0.0 SS27 2 0.0 1 16-Dec-21 0.0 SS27 2 0.0 0.1 16-Dec-21 0.0 SS27 2 0.0 1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 0.5	3.2	2.9	1.2	0.8	4.1	1.8	2.2	1.2	< 0.5	0.9	19	3.0	3.3 0.6	< 0.5		< 0.5 < 0.	5 0.9	< 0.5 3.2	2.9	1.2 0.	.8 4.1	1.8 2.2	2 1.2	< 0.5 0.9	19	3.0 3.3
SS27_1_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5		< 0.5 0.6
SS27_2_0.0-0.1 16-Dec-21 0.0 SS27_3_0.0-0.1 16-Dec-21 0.0 SS27_4_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.5	1.5	0.7	< 0.5	2.3	0.9	1.2 < 0.5	1.0	< 0.5	< 0.5	9.1	1.6	1.9 0.6	< 0.5	< 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 1.5	1.5	0.7 < 0	0.5 2.3	0.9 1.2	2 1.0	< 0.5 < 0.5	9.1	1.6 1.9 < 0.5 0.6
SS27_3_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5		
SS27_4_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5		< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5		< 0.5 0.6
SS27_5_0.0-0.1 16-Dec-21 0.0 SS27_6_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	0.7	< 0.5	5.2	1.2	14	13	6.4	4.2	18	6.5	10	6.4	1.8	4.6	92	15	15	< 0.5		0.7 < 0.	5 5.2	1.2 14	13	6.4 4.	.2 18	6.5 10	6.4	1.8 4.6	92	15 15
SS27_6_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5		< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5		< 0.5 0.6
SS29_1_0.0-0.1 16-Dec-21 0.0	0.8	< 0.5	4.1	1.7	21	6.8	43	40	27	19	61	14	31	26	8.3	20	324	52	52	< 0.5		2.1 0.7	9.7	3.2 30	27	15 9.	.9 35	12 19	/ 12	< 0.5 8.3		26 26
SS29_2_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	1.1	< 0.5	< 0.5	1.9	0.7	0.9	0.8	< 0.5	< 0.5	6.6	1.2	1.5	< 0.5		< 0.5 < 0.	5 < 0.5	< 0.5 1.2	1.1		0.5 1.9	0.7 0.9	9 0.8		6.6	1.2 1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 0.5	< 0.5	< 0.5	< 0.5	1.7	< 0.5	5.2	5.1	2.3	1.5	7.7	2.9	4.0 < 0.5	2.5	0.8	1.8	36	6.3	6.3 0.6	< 0.5	< 0.5	< 0.5 < 0.	5 1.7	< 0.5 5.2	5.1	2.3 1.	l.5 7.7	2.9 4.0	0 2.5		36	6.3 6.3
SS29_4_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5		< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5		< 0.5 0.6
SS29_5_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.4	1.3	0.6	< 0.5	1.9	0.9	1.1	0.6	< 0.5	< 0.5	7.8	1.4	1.7	< 0.5		< 0.5 < 0.		< 0.5 1.4		0.6 < 0	0.5 1.9	0.9 1.1				1.4 1.7
SS29_6_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	1.5	< 0.5	4.5	4.2	1.9	1.2	6.2	2.7	3.3	2.1	0.6	1.4	30	5.2	5.2	< 0.5		< 0.5 < 0.		< 0.5 4.5		1.9 1.		2.7 3.3			30	5.2 5.2
SW03_0.0-0.1 16-Dec-21 0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0.	5 < 0.5	< 0.5 < 0	0.5 < 0.5	< 0.5 < 0.5	.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 0.6

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting ma/kq - Milligrams per kiloaram Bold indicates a detection above the laboratory limit of reporting Bold indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline) Highlighting indicates an exceedance of the corresponding criteria (highlighting corresponds to the guideline with the highest criteria value where analytical result exceeds more than one guideline)

Criteria: National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 5 Soil Analytical Data - PCBs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						Polychlorinat	ed Biphenyls			
	Analyte		Aroclor-1260	Aroclor-1254	Aroclor-1221	Aroclor-1232	Aroclor-1248	Aroclor-1016	Aroclor-1242	Total PCBs
	LOR		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NE	PM 2013)								1.0
Sample Name	Sample Date	Start Depth (m)								
SS03	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS09	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS11	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS15	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS22	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS28	30-Oct-19	0.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BS10_0.1	08-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
FB03_0.1	08-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
FB05_0.1	08-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MY01_0.1	09-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PG02_0.1	09-Apr-20	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PV07_0.7	08-Apr-20	0.7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Notes:

< - Less than laboratory limit of reporting
 LOR - Laboratory limit of reporting
 mg/kg - Milligrams per kilogram
 PCB - Polychlorinated Biphenyl

Criteria:

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 6 Soil Analytical Data - Pesticides Glenlyon Reserve Suttons Lane Glenlyon, Victoria

																					Organochlorine F
	Analyte		2,4,5-T	2,4- Dichlorophenoxyacetic Acid	2-Methyl-4- Chlorophenoxy Butanoic Acid	4,4'-DDE	4,4'-DDD	4,4'-DDT	alpha-BHC	beta-BHC	gamma-BHC	delta-BHC	Aldrin	Heptachlor epoxide	cis-Chlordane	trans-Chlordane	Chlordane	alpha-Endosulfan	beta-Endosulfan	Endosulfan (sum)	Endosulfan sulfate
	LOR		0.5	0.5	0.5	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.1	0.05	0.05	0.05	0.05
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NE	PM 2013)	800	1,300	800										70	70	70			340	
EIL - Urban Resid	dential/Public Open	Space (NEPM 2013)						180													
Sample Name	Sample Date	Start Depth (m)		•				•	•					•		•	•	•			•
SS03	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
SS09	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
SS11	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
SS15	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
SS22	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
SS28	30-Oct-19	0.0	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
BS10_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
CG02_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
CG07_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
CG09_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
CG12_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
FB03_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
FB05_0.1	08-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
MY01_0.1	09-Apr-20	0.1	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
PG02_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05
PV07_0.7	08-Apr-20	0.7	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	< 0.1	< 0.05	< 0.05	-	< 0.05

Notes: - Not analysed < Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram DDT - Dichlorodiphenyltrichloroethane 2,4,5-T - 2,4,5-Trichlorophenoxyacetic acid MCPA - 2-methyl-4-chlorophenoxyacetic acid DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

Criteria: National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

Table 6 Soil Analytical Data - Pesticides Glenlyon Reserve Suttons Lane Glenlyon, Victoria

			esticides																			
	Analyte		Endrin	Endrin aldehyde	Endrin ketone	Dieldrin	Heptachlor	Hexachlorobenzene	Hexachlorocyclopen tadiene	Hexachloroethane	MCPA	Mecoprop	Methoxychlor	Mirex	Oxychlordane	Picloram	Toxaphene	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Sum of other Organochlorine pesticides	Total Organochlorine Pesticides	e Azinphos meth
	LOR		0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.1	0.5	0.5	0.05	0.01	0.05	0.5	1.0	0.05	0.05	0.1	0.1	0.2
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NE	PM 2013)	20				10	10			800		400	20		5,700	30	10	400			
IL - Urban Resid	dential/Public Open	Space (NEPM 2013)																				
Sample Name	Sample Date	Start Depth (m)						•												•		•
SS03	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
SS09	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
SS11	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
SS15	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
SS22	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
SS28	30-Oct-19	0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1	-	-	< 0.05	-	< 0.05	-	-	< 0.05	< 0.05	-	-	-
BS10_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	-
CG02_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	< 0.2
CG07_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	< 0.2
CG09_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-		-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	< 0.2
CG12_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-		-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	< 0.2
FB03_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-		-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	-
FB05_0.1	08-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	-
MY01_0.1	09-Apr-20	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-	-	-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	-
PG02_0.1	09-Apr-20	0.1	< 0.05	-	-	< 0.05	< 0.05	< 0.05	-	-	< 0.5	< 0.5	< 0.05	< 0.01	-	< 0.5	< 1.0	-	-	-	-	-
PV07_0.7	08-Apr-20	0./	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	< 0.05	-		-	< 1.0	< 0.05	< 0.05	< 0.1	< 0.1	-

Notes: - - Not analysed < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram DDT - Dichlorodiphenyltrichloroethane 2,4,5-T - 2,4,5-Trichlorophenoxyacetic acid MCPA - 2-methyl-4-chlorophenoxyacetic acid DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

Criteria: National Environment Protection (Assessment of Site Contar

																Or	ganophosphorus	Pesticides					
	Analyte		Bolstar	Chlorfenvinphos	Chlorpyriphos	Chlorpyriphos- methyl	Coumaphos	Demeton-S	Demeton-O	Disulfoton	Diazinon	Dichlorvos	Dimethoate	EPN	Ethion	Ethoprop	Fenitrothion	Fensulfothion	Fenthion	Malathion	Merphos	Mevinphos	Monocrotophos
	LOR		0.2	0.2	0.2	0.2	2.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2.0
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NE	PM 2013)			250																		
EIL - Urban Resid	dential/Public Open	Space (NEPM 2013)																					
Sample Name	Sample Date	Start Depth (m)										•			•			•					
SS03	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS09	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS11	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS15	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS22	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS28	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BS10_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CG02_0.1	08-Apr-20	0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0
CG07_0.1	08-Apr-20	0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0
CG09_0.1	08-Apr-20	0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0
CG12_0.1	08-Apr-20	0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 2.0
FB03_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FB05_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MY01_0.1	09-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG02_0.1	09-Apr-20	0.1	-	-	< 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PV07_0.7	08-Apr-20	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: - Not analysed < Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram DDT - Dichlorodiphenyltrichloroethane 2,4,5-T - 2,4,5-Trichlorophenoxyacetic acid MCPA - 2-methyl-4-chlorophenoxyacetic acid DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

Criteria: National Environment Protection (Assessment of Site Contar

	Analyte		Omethoate	Parathion	Parathion-methyl	Phorate	Pirimiphos-methyl	Ronnel	Terbufos	Tetrachlorvinphos	Trichloronate	Atrazine	Bifenthrin	Naled	Pyrazophos	Tokuthion
	LOR		2.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.05	0.2	0.2	0.2
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NEP	PM 2013)										400	730			
EIL - Urban Resid	dential/Public Open	Space (NEPM 2013)														
Sample Name	Sample Date	Start Depth (m)							•				•			
SS03	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS09	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS11	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS15	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS22	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SS28	30-Oct-19	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BS10_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CG02_0.1	08-Apr-20	0.1	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 0.2	< 0.2	< 0.2
CG07_0.1	08-Apr-20	0.1	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 0.2	< 0.2	< 0.2
CG09_0.1	08-Apr-20	0.1	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 0.2	< 0.2	< 0.2
CG12_0.1	08-Apr-20	0.1	< 2.0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 0.2	< 0.2	< 0.2
FB03_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FB05_0.1	08-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MY01_0.1	09-Apr-20	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG02_0.1	09-Apr-20	0.1	-	-	-	-	-	-	-	-	-	< 0.2	< 0.05	-	-	-
PV07_0.7	08-Apr-20	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: - Not analysed < Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram DDT - Dichlorodiphenyltrichloroethane 2,4,5-T - 2,4,5-Trichlorophenoxyacetic acid MCPA - 2-methyl-4-chlorophenoxyacetic acid DDE - Dichlorodiphenyldichloroethylene DDD - Dichlorodiphenyldichloroethane

Criteria: National Environment Protection (Assessment of Site Contar

							Phenolic Co	ompounds (Non-Chl	orinated)								Ρ	henolic Compound	ds (Chlorinated)			
	Analyte		Phenol	2-Methylphenol (o- Cresol)	3- & 4- Methylphenol (m& cresol)	p 2-Nitrophenol	2,4-Dimethylpheno	ol 2,4-Dinitrophenol	4-Nitrophenol	Dinoseb	2-Cyclohexyl-4,6 dinitrophenol	- 4,6-Dinitro-2- methylphenol	Non-Halogenated Phenols (Sum of total)	2-Chlorophenol	4-Chloro-3- methylphenol	2,4-Dichlorophenol	2,6-Dichlorophenol	2,4,6- Trichlorophenol	2,4,5- Trichlorophenol	Tetrachlorophenols (Sum of total)	Pentachlorophenol	Halogenated Phenols (Sum of total)
	LOR		0.5	0.2	0.4	1.0	0.5	5.0	5.0	20	20	5.0	20	0.5	1.0	0.5	0.5	1.0	1.0	10	1.0	1.0
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
HIL C	- Recreational (NEF	PM 2013)	40,000																		120	
Sample Name	Sample Date	Start Depth (m)																				
SS03	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS09	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS11	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS15	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS22	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SS28	30-Oct-19	0.0	< 0.5	-	-	< 0.5	< 0.5	< 30	< 0.5	< 10	< 30	< 10	< 30	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BS10_0.1	08-Apr-20	0.1	< 0.5	< 0.2	< 0.4	< 1.0	< 0.5	< 5.0	< 5.0	< 20	< 20	< 5.0	< 20	< 0.5	< 1.0	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 1.0	< 1.0
FB03_0.1	08-Apr-20	0.1	< 0.5	< 0.2	< 0.4	< 1.0	< 0.5	< 5.0	< 5.0	< 20	< 20	< 5.0	< 20	< 0.5	< 1.0	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 1.0	< 1.0
FB05_0.1	08-Apr-20	0.1	< 0.5	< 0.2	< 0.4	< 1.0	< 0.5	< 5.0	< 5.0	< 20	< 20	< 5.0	< 20	< 0.5	< 1.0	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 1.0	< 1.0
MY01_0.1	09-Apr-20	0.1	< 0.5	< 0.2	< 0.4	< 1.0	< 0.5	< 5.0	< 5.0	< 20	< 20	< 5.0	< 20	< 0.5	< 1.0	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 1.0	< 1.0
PG02_0.1	09-Apr-20	0.1	< 0.5	< 0.2	< 0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 1.0	-
PV07_0.7	08-Apr-20	0.7	< 0.5	< 0.2	< 0.4	< 1.0	< 0.5	< 5.0	< 5.0	< 20	< 20	< 5.0	< 20	< 0.5	< 1.0	< 0.5	< 0.5	< 1.0	< 1.0	< 10	< 1.0	< 1.0

Notes: - - Not analysed < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting mg/kg - Milligrams per kilogram

Criteria: National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013).

	Analyte							Halogenate	ed Aliphatic Compo	ounds						Volatile Halogenated Compounds			Halogenate	d Aliphatic Compou
			1,1,1,2- Tetrachloroethane	1,1,1- Trichloroethane	1,1,2,2- Tetrachloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1- Dichloropropene	1,2-Dibromo-3- chloropropane	1,2-Dichloroethane	1,2,3- Trichloropropane	1,3- Dichloropropane	Bromomethane	Bromochlorometha ne	Carbon tetrachloride	Chloroethane	Chloromethane	cis-1,2- Dichloroethene	Dibromomethane
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Start Depth (m)																		
SS03	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
SS09	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
SS11	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
SS15	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
SS22	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
SS28	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5
BS10_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
FB03_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
FB05_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MY01_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PV07_0.7	08-Apr-20	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

	Analyte		hane mg/kg mg/kg		Volatile Halogenated Compounds	Halogenated Aliphatic Compounds	Volatile Halogenated Compounds	Halogenated Aliphatic Compounds	Volatile Halogenated Compounds	Halogenated Aliphatic Compounds	Volatile Halogenated Compounds						Chlorinated M	IAHs
				Dichloromethane	Hexachlorobutadiene	Iodomethane	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Trichlorofluorometh ane	Vinyl chloride	1,2,4- Trichlorobenzene	1,2,3,5- Tetrachlorobenzen e	1,2,3- Trichlorobenzene	1,2,4,5- Tetrachlorobenzen e	1,3,5- Trichlorobenzene	1,2- Dichlorobenzene	1,3- Dichlorobenzene
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Start Depth (m)																
SS03	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS09	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS11	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS15	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS22	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SS28	30-Oct-19	0.0	-	< 1.0	< 0.1	-	< 0.5	< 0.5	< 0.5	< 2.0	< 1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BS10_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5
FB03_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5
FB05_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5
MY01_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5
PV07 0.7	08-Apr-20	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5

	Analyte							Volatile Halogenated Compounds		Chlorinated	MAHs		Monocy	clic Aromatic Hydrod	carbons	Monocyclic Aromatic Hydrocarbons (MAH)	Monocyclic Aromatic Hydrocarbons		Volatile Halogenated Compounds
			1,4- Dichlorobenzene	2-Chlorotoluene	4-Chlorotoluene	Benzyl chloride	Bromobenzene	Chlorobenzene	Pentachlorobenzene	1,2,3,4- Tetrachlorobenzene	Benzal chloride	Benzotrichloride	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Isopropylbenzene	Styrene	Sum of monocyclic aromatic hydrocarbons	Sum of other chlorinated hydrocarbons	Sum of volatile chlorinated hydrocarbons
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Start Depth (m)																	
SS03	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
SS09	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
SS11	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
SS15	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
SS22	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
SS28	30-Oct-19	0.0	< 0.1	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	-	< 0.5	< 0.5	-	-	-
BS10_0.1	08-Apr-20	0.1	< 0.5	-	< 0.5	-	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
FB03_0.1	08-Apr-20	0.1	< 0.5	-	< 0.5	-	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
FB05_0.1	08-Apr-20	0.1	< 0.5	-	< 0.5	-	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MY01_0.1	09-Apr-20	0.1	< 0.5	-	< 0.5	-	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PV07_0.7	08-Apr-20	0.7	< 0.5	-	< 0.5	-	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

	Analyte		Trihalomet	hanes	Volatile Halogenated Compounds	Trihalomethanes	Solv	rents				Fi	umigants			
			Bromodichlorometh ane	Bromoform	Chloroform	Dibromochlorometh ane	2-Butanone (MEK)	4-Methyl-2- pentanone (MIBK)	Acetone	Allyl chloride	1,2-Dibromoethane	1,2- Dichloropropane	2,2- Dichloropropane	cis-1,3- Dichloropropene	trans-1,3- Dichloropropene	Carbon disulfide
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Start Depth (m)														
SS03	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
SS09	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
SS11	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
SS15	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
SS22	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
SS28	30-Oct-19	0.0	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
BS10_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5
FB03_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5
FB05_0.1	08-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5
MY01_0.1	09-Apr-20	0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5
PV07 0.7	08-Apr-20	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5

Table 9 Quality Control Sample Analysis - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						Ме	tals			
	Analyte		Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Sample Type		-				-		
OG36_0.6_06042020	06-Apr-20	Primary	5.1	< 0.4	27	12	-	33	11	23
QC01_06042020	06-Apr-20	Duplicate	5.0	< 0.4	33	12	-	31	14	29
	Percentage Differe 06-Apr-20	r	2%	NC	20% 27	0%	NC -	6% 33	24%	23%
OG36_0.6_06042020 QC02_06042020	06-Apr-20	Primary Triplicate	5.1 10	< 0.4 < 1.0	27	12 11	-	46	11 12	23 18
	Percentage Differe		65%	NC NC	0%	9%	NC	33%	9%	24%
OG04 0.1 06042020	06-Apr-20	Primary	4.2	< 0.4	26	14	-	130	11	22
QC03 06042020	06-Apr-20	Duplicate	3.7	< 0.4	30	14	-	83	13	26
	Percentage Differe		13%	NC	14%	0%	NC	44%	17%	17%
OG04_0.1_06042020	06-Apr-20	Primary	4.2	< 0.4	26	14	-	130	11	22
QC04_06042020	06-Apr-20	Triplicate	6.0	< 1.0	26	14	-	56	11	19
	Percentage Differe		35%	NC	0%	0%	NC	80%	0%	15%
OG26_0.1_07042020	07-Apr-20	Primary	4.5	< 0.4	20	7.5	-	42	10	42
QC08_07042020	07-Apr-20	Duplicate	4.0	< 0.4	21	7.4	-	98	11	47
	Percentage Differe		12%	NC	5%	1%	NC	80%	10%	11%
OG26_0.1_07042020	07-Apr-20	Primary	4.5	< 0.4	20	7.5	-	42	10	42
QC09_07042020	07-Apr-20	Triplicate	5.0	< 1.0	18	7.0	-	45	10	38
	Percentage Differe		11%	NC	11%	7%	NC	7%	0%	10%
OG20_0.4_07042020 QC10_07042020	07-Apr-20 07-Apr-20	Primary Duplicate	6.8 5.8	< 0.4	47 40	12 12	-	50 72	14 15	20 20
	Percentage Differe		16%	< 0.4 NC	16%	0%	NC	36%	7%	0%
OG20_0.4_07042020	07-Apr-20	Primary	6.8	< 0.4	47	12	-	50	14	20
OC11 07042020	07-Apr-20	Triplicate	6.0	< 1.0	34	11	-	49	13	14
	Percentage Differe		13%	NC	32%	9%	NC	2%	7%	35%
CG03 0.1 08042020	08-Apr-20	Primary	< 2.0	< 0.4	14	< 5.0	-	9.4	< 5.0	15
QC15_08042020	08-Apr-20	Duplicate	< 2.0	< 0.4	13	< 5.0	-	10	< 5.0	14
Relative	Percentage Differe	nce	NC	NC	7%	NC	NC	6%	NC	7%
CG03_0.1_08042020	08-Apr-20	Primary	< 2.0	< 0.4	14	< 5.0	-	9.4	< 5.0	15
QC16_08042020	08-Apr-20	Triplicate	< 5.0	< 1.0	14	< 5.0	-	9.0	4.0	11
	Percentage Differe	nce	NC	NC	0%	NC	NC	4%	22%	31%
CG02_0.5_08042020	08-Apr-20	Primary	3.4	< 0.4	36	16	-	21	29	42
QC17_08042020	08-Apr-20	Duplicate	3.0	< 0.4	34	14	-	19	31	36
	Percentage Differe	r	13%	NC	6%	13%	NC	10%	7%	15%
CG02_0.5_08042020	08-Apr-20	Primary	3.4	< 0.4	36	16	-	21	29	42
QC18_08042020 Relative	08-Apr-20 Percentage Differe	Triplicate	< 5.0 38%	< 1.0 NC	30 18%	14 13%	- NC	21 0%	22 27%	24 55%
PG01_0.1_09042020	09-Apr-20	Primary	5.7	< 0.4	35	13%	- INC	17	27%	46
QC23 09042020	09-Apr-20	Duplicate	8.3	< 0.4	62	13	-	17	25	43
	Percentage Differe		37%	NC	56%	0%	NC	6%	4%	7%
PG01 0.1 09042020	09-Apr-20	Primary	5.7	< 0.4	35	13	-	17	25	46
QC24_09042020	09-Apr-20	Triplicate	10	< 1.0	35	10	-	17	19	38
	Percentage Differe		55%	NC	0%	26%	NC	0%	27%	19%
OG53_0.1_09042020	09-Apr-20	Primary	12	< 0.4	37	13	23,000	81	18	27
QC25_09042020	09-Apr-20	Duplicate	4.5	< 0.4	26	13	-	21	13	21
	Percentage Differe		91%	NC	35%	0%	NC	118%	32%	25%
OG53_0.1_09042020	09-Apr-20	Primary	12	< 0.4	37	13	23,000	81	18	27
QC26_09042020	09-Apr-20	Triplicate	6.0	< 1.0	33	13	-	24	16	24
	Percentage Differe	r	67%	NC	11%	0%	NC	109%	12%	12%
SD01_09042020	09-Apr-20	Primary	7.8	< 0.4	17	10	-	16	11	39
QC27_09042020	09-Apr-20	Duplicate	3.6	< 0.4	11	< 5.0	-	12	7.5	24
	Percentage Differe		74%	NC	43%	67%	NC	29%	38%	48%
	09-Apr-20	Primary	7.8	< 0.4	17	10	-	16	11	39
SD01_09042020 QC28_09042020	09-Apr-20	Triplicate	35	< 1.0	14	6.0		14	12	65

Notes: - - Not analysed < - Less than laboratory limit of reporting NC - Not calculated mg/kg - Milligrams per kilogram RPD - Relative Percentage Difference

Criteria:

Table 9A Quality Control Sample Analysis - Metals Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

			Metals
	Analyte		Lead
	Units		mg/kg
Sample Name	Sample Date	Sample Type	
SB07_0.1_05012021	05-Jan-21	Primary	35
QC01_0.1_05012021	05-Jan-21	Duplicate	34
Relative I	Percentage Differe	nce	3%
SB07_0.1_05012021	05-Jan-21	Primary	35
QC02_0.1_05012021	05-Jan-21	Triplicate	32
Relative F	Percentage Differe	nce	9%

Notes:

mg/kg - Milligrams per kilogram

Table 10 Quality Control Sample Analysis - PAHs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						Polycy	clic Aromatic Hydr	rocarbons								Poly	cyclic Aromatic Hydroca	rbons			
Analyte	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo(b+j)fluoranther e	n Benzo[a]pyrene	Indeno[1,2,3-c,d]pyren	e Dibenz[a,h]anthracen	e Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (LOR)	e Benzo[a]pyrene TEQ (Half LOR)
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name Sample Date Sample Type																					
OG36_0.6_06042020 06-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC01_06042020 06-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	- NC	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 NC	< 0.5	-	0.6
Relative Percentage Difference OG36_0.6_06042020 06-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	- NC	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NC -	0%
QC02 06042020 06-Apr-20 Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
OG04_0.1_06042020 06-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	1.3	0.8	0.7	0.7	0.9	-	1.1	< 0.5	< 0.5	< 0.5	6.8	1.3	-	1.6
QC03_06042020 06-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference OG04 0.1 06042020 06-Apr-20 Primary	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	89%	89%	46%	33%	33%	57%	NC	75%	NC < 0.5	NC < 0.5	NC < 0.5	173% 6.8	89%	NC -	91% 1.6
QC04 06042020 06-Apr-20 Printary QC04 06042020 06-Apr-20 Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	89%	89%	46%	33%	NC	57%	NC	75%	NC	NC	NC	173%	89%	NC	91%
OG26 0.1 07042020 07-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.7	1.5	1.4	0.9	1.1	1.2	-	1.4	1.0	0.5	1.1	12	2.3	-	2.3
QC08 07042020 07-Apr-20 Duplicate	< 0.5	< 0.5	1.0	< 0.5	7.1	1.4	25	23	15	11	12	11	-	13	9.2	2.2	8.4	139	20	-	20
Relative Percentage Difference OG26 0.1 07042020 07-Apr-20 Primary	NC < 0.5	NC < 0.5	67% < 0.5	NC < 0.5	174% < 0.5	95% < 0.5	175%	176%	166%	170% 0.9	166%	161%	NC	161%	161%	0.5	154%	169%	159%	NC	159%
OG26 0.1 07042020 07-Apr-20 Primary QC09 07042020 07-Apr-20 Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	4.5	4.3	3.6	3.2	1.1	2.0	6.8	5.1	2.9	0.9	3.6	39	7.6	7.6	2.3
Relative Percentage Difference	NC NC	NC NC	NC NC	NC NC	105%	NC.	90%	97%	88%	112%	NC	50%	NC NC	114%	97%	57%	106%	106%	107%	NC NC	107%
OG20 0.4 07042020 07-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC10 07042020 07-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
OG20 0.4 07042020 07-Apr-20 Primary	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5	- < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	- 1.2	0.6
OC11 07042020 07-Apr-20 Triplicate Relative Percentage Difference	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5	NC	× 0.5	× 0.5	× 0.5 NC	× 0.5 NC	< 0.5 NC	NC.	× 0.5	× 0.5	< 0.5	× 0.5	× 0.5	< 0.5 NC	< 0.5 NC	× 0.5 NC	NC	0.8
CG03 0.1 08042020 08-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC15 08042020 08-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
CG03 0.1 08042020 08-Apr-20 Primary	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	- < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	- 1.2	0.6
OC16 08042020 08-Apr-20 Triplicate Relative Percentage Difference	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5	< 0.5	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5	NC	< 0.5	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	1.2 NC	0.8
CG02 0.5 08042020 08-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC17 08042020 08-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
CG02 0.5 08042020 08-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
OC18 08042020 08-Apr-20 Triplicate Relative Percentage Difference	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5 NC	< 0.5 NC	- NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	< 0.5 NC	1.2 NC	0.6
PG01 0.1 09042020 09-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC23 09042020 09-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
PG01 0.1 09042020 09-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
OC24 09042020 09-Apr-20 Triplicate Relative Percentage Difference	< 0.5	< 0.5	< 0.5 NC	< 0.5	< 0.5	< 0.5 NC	< 0.5	< 0.5 NC	< 0.5 NC	< 0.5	- NC	< 0.5	< 0.5	< 0.5	< 0.5 NC	< 0.5	< 0.5	< 0.5 NC	< 0.5 NC	1.2 NC	0.6
OG53 0.1 09042020 09-Apr-20 Primary	NC < 0.5	NC < 0.5	NC < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NC -	< 0.5	NC < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NC -	0%
OC25 09042020 09-Apr-20 Printary OC25 09042020 09-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	0.7	0.5	0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	2.4	< 0.5	-	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	33%	33%	0%	0%	NC	NC	NC	NC	NC	NC	NC	131%	NC	NC	0%
OG53 0.1 09042020 09-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC26 09042020 09-Apr-20 Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative Percentage Difference SD01 09042020 09-Apr-20 Primary	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC < 0.5	NC	0%
SD01 09042020 09-Apr-20 Primary QC27 09042020 09-Apr-20 Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative Percentage Difference	NC NC	NC.	NC NC	NC.	NC NC	NC.	NC NC	NC NC	NC NC	NC NC	NC.	NC NC	NC	NC NC	NC.	NC NC	NC.	NC NC	NC NC	NC	0.0
SD01 09042020 09-Apr-20 Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC28 09042020 09-Apr-20 Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative Percentage Difference	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%

Notes: - Not analysed < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NC - Not calculated mg/kg - Milligrams per kilogram RPD - Relative Percentage Difference

Criteria:

Table 10A Quality Control Sample Analysis - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

													Polycyclic	Aromatic Hydrocarbon	S								
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[b] & Benzo[j]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (LOR)	Benzo[a]pyrene TEQ (Half LOR)
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Sample Type																					
SB07_0.1_05012021	05-Jan-21	Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC01_0.1_05012021	05-Jan-21	Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
Relative	Percentage Differer	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%
SB07_0.1_05012021	05-Jan-21	Primary	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	0.6
QC02_0.1_05012021	05-Jan-21	Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative	Percentage Differer	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0%

Table 10B Quality Control Sample Analysis - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

													Poly	cyclic Aromatic Hydroca	arbons								
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[b] & Benzo[j]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH	Benzo[a]pyrene TEQ (Zero)	Benzo[a]pyrene TEQ (LOR)	Benzo[a]pyrene TEQ (Half LOR)
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Name	Sample Date	Sample Type																					
SS15_2_0.0-0.1_16122021	16-Dec-21	Primary	< 0.5	< 0.5	< 0.5	< 0.5	2.1	0.6	6.2	5.8	3.0	1.9	8.1	3.8	-	4.8	2.2	< 0.5	1.5	40	6.4	-	6.7
QC01_16122021	16-Dec-21	Duplicate	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	2.5	2.3	1.0	0.6	2.8	1.3	-	1.5	0.7	< 0.5	< 0.5	13	2.1	-	2.3
Relative Per	ercentage Difference	e	NC	NC	NC	NC	100%	18%	85%	86%	100%	104%	97%	98%	NC	105%	103%	NC	100%	100%	101%	NC	98%
SS15_2_0.0-0.1_16122021	16-Dec-21	Primary	< 0.5	< 0.5	< 0.5	< 0.5	2.1	0.6	6.2	5.8	3.0	1.9	8.1	3.8	-	4.8	2.2	< 0.5	1.5	40	6.4	-	6.7
QC02_16122021	16-Dec-21	Triplicate	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	0.6
Relative Per	ercentage Difference	e	NC	NC	NC	NC	123%	18%	170%	168%	143%	117%	NC	153%	NC	162%	126%	NC	100%	195%	171%	NC	167%

Notes: - Not analysed < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NC - Not calculated mg/kg - Milligrams per kilogram RPD - Relative Percentage Difference

Table 11 Quality Control Sample Analysis - BTEXN, TRH Glenlyon Reserve Suttons Lane Glenlyon, Victoria

	Analyte					BTEXN				Total Petroleum Hydrocarbons	Total Recove	rable Hydrocarbons
	Analyte		Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	C ₆ - C ₉	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type										
QC20_06042020	06-Apr-20	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.003	< 0.01	< 0.02	< 0.02	< 0.02
QC30_09042020	09-Apr-20	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.003	< 0.01	< 0.02	< 0.02	< 0.02

Notes:

Less than laboratory limit of reporting
 mg/L - Milligrams per litre
 BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene

Table 12 Quality Control Sample Analysis - Metals Glenlyon Reserve Suttons Lane Glenlyon, Victoria

						Metals			
	Analyte		Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type							
QC07_06042020	06-Apr-20	Rinsate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC19_06042020	06-Apr-20	Rinsate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC14_07042020	07-Apr-20	Rinsate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC29_09042020	09-Apr-20	Rinsate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005

Notes:

 - Less than laboratory limit of reporting mg/L - Milligrams per litre

Table 13 Quality Control Sample Analysis - PAHs Glenlyon Reserve Suttons Lane Glenlyon, Victoria

											P	olycyclic Aromatic Hyd	Irocarbons						
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																	
QC07_06042020	06-Apr-20	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC19_06042020	06-Apr-20	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC14_07042020	07-Apr-20	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC29_09042020	09-Apr-20	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Notes: < - Less than laboratory limit of reporting mg/L - Milligrams per litre

Table 3 Quality Control Sample Analysis - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

											Po	olycyclic Aromatic Hydr	rocarbons						
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																	
QC05_16122021	16-Dec-21	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Notes: < - Less than laboratory limit of reporting mg/L - Milligrams per litre

Table 14 Surface Water Analytical Data - Inorganics Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

									Anions and Catio	ons							Alk	alinity		Inorga	anics
	Analyte		Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Total Phosphorus	Nitrite as N	Nitrate as N	Ammonia as N	Total Nitrogen as N	Total Kjeldahl Nitrogen as N	Nitrogen	Bicarbonate Alkalinity as CaCO3		Hydroxide Alkalinity as CaCO3	Total Alkalinity as CaCO3	Total Dissolved Solids	Total Suspended Solids
	LOR		0.5	0.5	0.5	0.5	5.0	1.0	0.01	0.02	0.02	0.01	0.05	0.2	0.2	20	10	20	20	10	1.0
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Water Dependent Ec	cosystems and species -	95% Freshwater										0.9									
Drinking	Water - Health (NHRMC	2016)					500														
Stock	k Watering (ANZECC 20	00)					1,000				400									2,500	
Risks in Recre	eational Water X10 (NH	MRC 2008)					5,000														
Sample Name	Sample Date	SWL (mBTOC)																			
DAM	09-Apr-20	-	13	7.6	6.5	0.6	< 5.0	17	0.02	< 0.02	< 0.02	0.08	< 0.05	0.3	0.3	81	< 10	< 20	81	230	-
SW01	09-Apr-20	-	14	3.9	3.8	1.2	< 5.0	20	0.01	< 0.02	< 0.02	0.01	< 0.05	1.3	1.3	51	< 10	< 20	51	200	12
SW02	09-Apr-20	-	14	4.0	3.8	1.2	< 5.0	55	0.02	< 0.02	< 0.02	< 0.01	< 0.05	0.3	0.3	54	< 10	< 20	54	150	15
SW01_1	16-Dec-21	-	12	3.8	4.6	1.0	< 5.0	13	0.01	< 0.02	0.23	< 0.01	0.23	0.9	1.13	50	< 10	-	-	91	-
SW01_2	16-Dec-21	-	12	3.8	4.7	1.0	< 5.0	13	0.01	< 0.02	0.23	0.02	0.23	0.4	0.63	47	< 10	-	-	150	-
SW02	16-Dec-21	-	12	3.8	4.6	1.0	< 5.0	13	0.01	< 0.02	0.24	0.04	0.24	< 0.2	0.24	51	< 10	-	-	120	-
SW03	16-Dec-21	-	77	25	26	1.7	< 5.0	46	0.13	< 0.02	< 0.02	0.1	< 0.05	3.4	3.4	320	13	-	-	390	-
SW04	16-Dec-21	-	150	54	78	2.6	< 5.0	61	0.01	< 0.02	< 0.02	0.05	< 0.05	< 0.2	< 0.2	790	55	-	-	850	-
SW05	16-Dec-21	-	12	3.9	4.8	1.1	< 5.0	13	0.03 *	< 0.02	0.24	0.02	0.24	0.8 *	1.04 *	51	< 10	-	-	61	-

Notes:

- - Not analysed

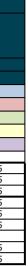
Less than laboratory limit of reporting
 LOR - Laboratory limit of reporting

mg/L - Milligrams per litre Bold indicates a detection above the laboratory limit of reporting

Criteria:

Water Quality Australia - Low Reliability Trigger Values (for toluene and ethylbenzene) for Freshwater (Water Quality Guidelines 2018). National Health and Medical Research Council (NHMRC) - National Water Quality Management Strategy: Australian Drinking Water Guidelines (2016). Australian and New Zealand Environment and Conservation Council (ANZECC) - Australian and New Zealand Guidelines for Freshwater and Stock Watering Quality, and Irrigation Trigger Value for long term use (LTV) (2000). National Health and Medical Research Council (NHMRC) - Guidelines for Managing Risks in Recreational Water (multiplication factor of 10 applied) (2008).

Table 15 Surface Water Analytical Data - Metals Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria


						Metals			
	Analyte		Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
	LOR		0.001	0.0002	0.001	0.001	0.001	0.001	0.005
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Water Dependent	Ecosystems and species - 95	% Freshwater	0.024	0.0002		0.0014	0.0034	0.011	0.008
Drinkin	g Water - Health (NHRMC 20	16)	0.01	0.002		2.0	0.01	0.02	
Irri	gation (LTV) (ANZECC 2000)		0.1	0.01	0.1	0.2	2.0	0.2	2.0
Sto	ock Watering (ANZECC 2000)		0.5	0.01	1.0	1.0	0.1	1.0	20
Risks in Re	creational Water X10 (NHMR	C 2008)	0.1	0.02		20	0.1	0.2	
Sample Name	Sample Date	SWL (mBTOC)							
DAM	09-Apr-20	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
SW01	09-Apr-20	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
SW02	09-Apr-20	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
SW01_1	16-Dec-21	-	< 0.001	< 0.0002	< 0.001	0.001	< 0.001	< 0.001	< 0.005
SW01_2	16-Dec-21	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
SW02	16-Dec-21	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
SW03	16-Dec-21	-	0.004	< 0.0002	0.001	0.005	0.003	0.004	0.006
SW04	16-Dec-21	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	0.002	< 0.005
SW05	16-Dec-21	-	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005

Notes:

- Not analysed
 - Less than laboratory limit of reporting mg/L - Milligrams per litre

Criteria: Water Quality Australia - Low Reliability Trigger Values (for toluene and ethylbenzene) for Freshwater (Water Quality Guidelines 2018). National Health and Medical Research Council (NHMRC) - National Water Quality Management Strategy: Australian Drinking Water Guidelines (2016). Australian and New Zealand Environment and Conservation Council (ANZECC) - Australian and New Zealand Guidelines for Freshwater and Stock Watering Quality, and Irrigation Trigger Value for long term use (LTV) (2000 National Health and Medical Research Council (NHMRC) - Guidelines for Managing Risks in Recreational Water (multiplication factor of 10 applied) (2008).

Table 16 Surface Water Analytical Data - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

											Ρ	olycyclic Aromatic Hyd	lrocarbons						
	Analyte		Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH
	LOR		0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Water Dependent Eco	cosystems and species - 9	95% Freshwater	0.016																
Drinking V	Water - Health (NHRMC	2016)																	0.00001
Stock	Watering (ANZECC 200))													0.00001				
Risks in Recre	eational Water X10 (NHM	IRC 2008)																	0.0001
Sample Name	Sample Date	SWL (mBTOC)																	
SW01	09-Apr-20	-	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
SW02	09-Apr-20	-	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
SW01_1	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW01_2	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW02	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW03	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW04	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW05	16-Dec-21	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Notes:

- - Not analysed

- Less than laboratory limit of reporting mg/L - Milligrams per litre

Criteria:

Criteria: Water Quality Australia - Low Reliability Trigger Values (for toluene and ethylbenzene) for Freshwater (Water Quality Guidelines 2018). National Health and Medical Research Council (NHMRC) - National Water Quality Management Strategy: Australian Drinking Water Guidelines (2016). Australian and New Zealand Environment and Conservation Council (ANZECC) - Australian and New Zealand Guidelines for Freshwater and Stock Watering Quality, and Irrigation Trigger Value for long term use (LTV) (2000). National Health and Medical Research Council (NHMRC) - Guidelines for Managing Risks in Recreational Water (multiplication factor of 10 applied) (2008).

Table 17 Quality Control Sample Analysis - BTEXN, TRH Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

	Analyte					BTEXN				Total Petroleum Hydrocarbons	Total Rec	coverable Hydrocarbons
			Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Total Xylenes	Naphthalene	C ₆ - C ₉	C ₆ - C ₁₀	C ₆ - C ₁₀ minus BTEX (F1)
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type										
QC30_09042020	09-Apr-20	Trip Blank	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.003	< 0.01	< 0.02	< 0.02	< 0.02

Notes:

- - Not analysed

< - Less than laboratory limit of reporting

NC - Not calculated

mg/L - Milligrams per litre

BTEXN - Benzene, toluene, ethylbenzene, total xylenes, naphthalene

Table 18 Quality Control Sample Analysis - Inorganics Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

	Analyte								Anions and Cati	ions						Alkali	nity	Inorganics
			Sodium	Calcium	Magnesium	Potassium	Sulphate	Chloride	Phosphorus	Nitrite as N	Nitrate as N	Ammonia as N	Total Nitrogen as N	Total Kjeldahl Nitrogen as N	Nitrogen	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Dissolved Solids
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																
SW05_16122021	16-Dec-21	Primary	12	3.9	4.8	1.1	< 5.0	13	0.01	< 0.02	0.24	0.02	0.24	< 0.2	0.24	51	< 10	61
QC01_16122021	16-Dec-21	Duplicate	13	3.9	4.9	1.0	< 5.0	13	0.03	< 0.02	0.23	0.03	0.24	0.8	1.04	52	< 10	37
Relative	e Percentage Diffe	rence	8%	0%	2%	10%	NC	0%	100%	NC	4%	40%	0%	120%	125%	2%	NC	49%

Notes: < - Less than laboratory limit of reporting LOR - Laboratory limit of reporting NC - Not calculated mg/L - Milligrams per litre RPD - Relative Percentage Difference

Table 19 Quality Control Sample Analysis - Metals Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

	Analyte					Metals			
			Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type							
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC01_16122021	16-Dec-21	Duplicate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
Relative	Percentage Differe	ence	NC	NC	NC	NC	NC	NC	NC
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC02_16122021	16-Dec-21	Triplicate	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
Relative	Percentage Different	ence	NC	NC	NC	NC	NC	NC	NC
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
QC02_16122021_2	16-Dec-21	Triplicate	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005
Relative	Percentage Different	ence	NC	NC	NC	NC	NC	NC	NC

Notes:

< - Less than laboratory limit of reporting NC - Not calculated

mg/L - Milligrams per litre

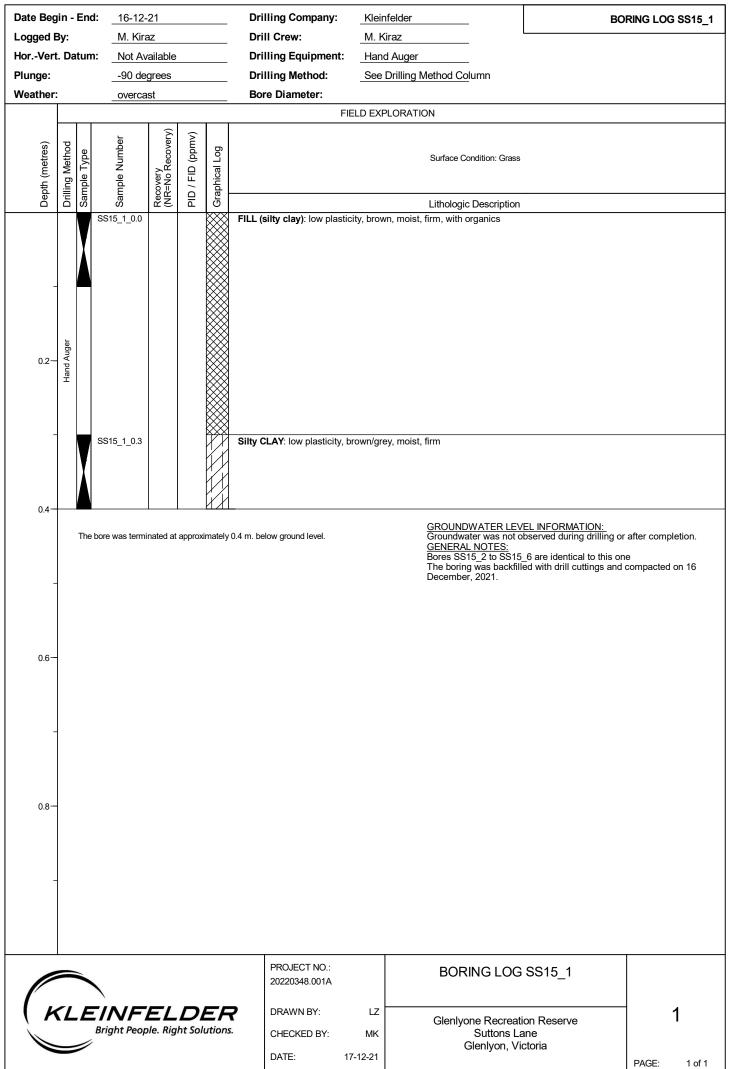
Table 20 Quality Control Sample Analysis - PAHs Glenlyon Recreation Reserve Suttons Lane Glenlyon, Victoria

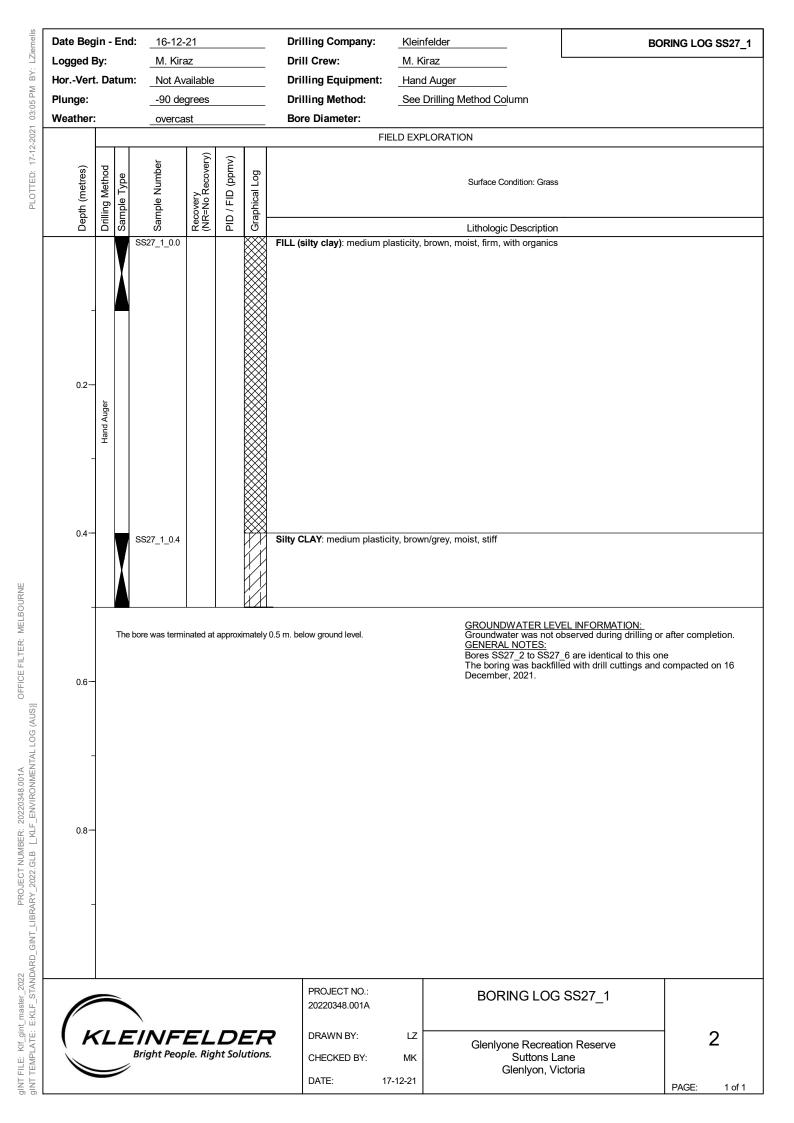
	Analyte										Ρ	olycyclic Aromatic Hydr	rocarbons						
			Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Chrysene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-c,d]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylene	Total PAH
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Name	Sample Date	Sample Type																	
RINSATE_16122021	16-Dec-21	Rinsate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC01_16122021	16-Dec-21	Duplicate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Relative P	Percentage Differe	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC02_16122021	16-Dec-21	Triplicate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Relative P	Percentage Differe	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SW05_16122021	16-Dec-21	Primary	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
QC02_16122021_2	16-Dec-21	Triplicate	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005
Relative P	Percentage Differe	nce	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

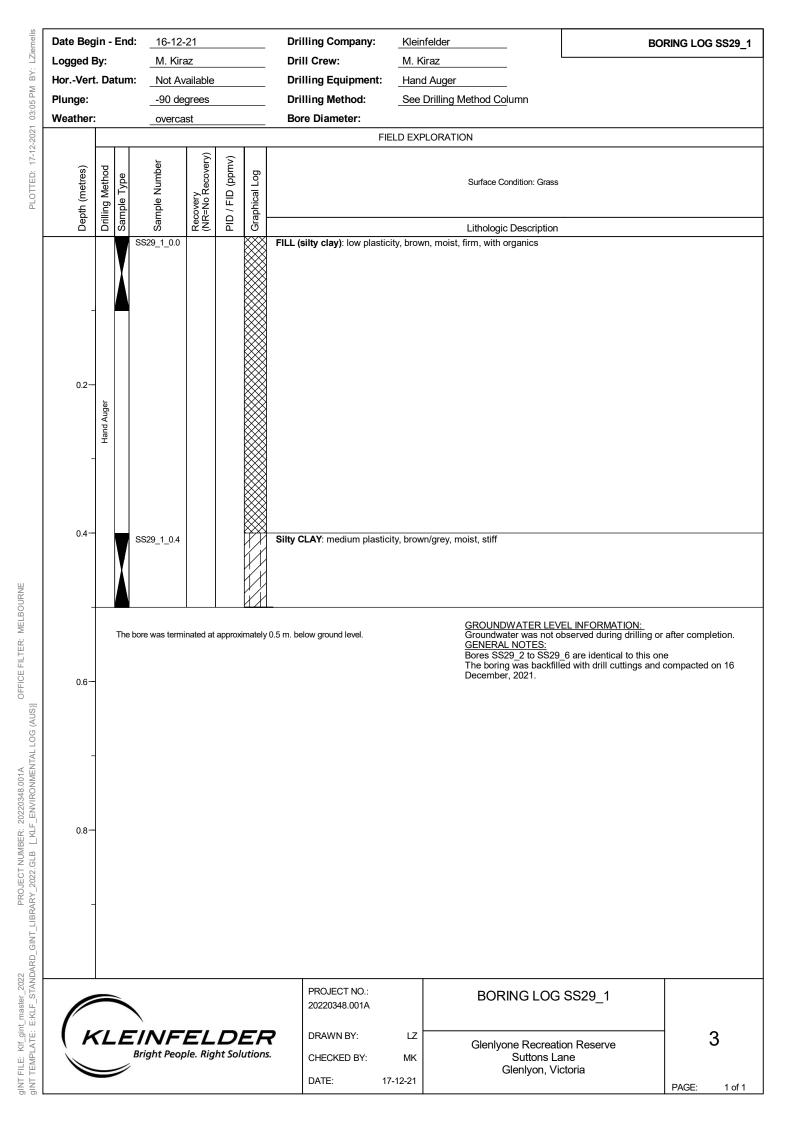
Notes: - - Not analysed < - Less than laboratory limit of reporting NC - Not calculated μg/L - Micrograms per litre mg/L - Milligrams per litre

20204153.001A/Glenlyon/MLB20R110335

APPENDIX A: FIELD LOGS


nber:		Site Name: <u> </u>	are Wo Recrution	1 0	Site Address:	Rec R	esense		Sample Bottles Collected: PHHH LX Orange, LX Green, LX Metal / QA/QC Samples Collected:
- /	6-12.21				Overas	t			
er (mm): Pre	Purging Depth To Wa	ater (mBTOC):	Post Purging Depth to V	Vater (mBTOC):	Surfa	ce Wat			
	TD (m) - DTV	_) x 5 = L V (m) 1 BV	Minimum volu	ime to be purged (3xBV)*:	L				
				DO	Fi	eld Measurements		Redox	
me	DTW (mBTOC)	Volume Purged (L)	Temp (°C)	(mg/L)	(us/cm)	(mg/L)	рН +/- 0.05	(mV) +/- 10 mV	Description Odour, sediment load, colour, sheen.
Criteria (1)	SW03		22.3	+/- 10%	+/- 3%	+1-3%	4.94	75-5	Brown, with Algae NIS
	SWOLI	~	14.6	7.48	102.7	83.2	4.81	44.1	Clerr, NIS, N/O
	SWOL 2		14.7	7.15	103.9	33.8	4.89	32,3	den NIS NIO
	SW02	_	14.9.	8.14	107.4	86.45	4.62	17.2	Brown, NIO, N/S,
	SNOS	-	21.9	4.36	1266	864.1	4.89	50.7	Brown, WIO, NIS
	5404		Dry						Dry
	SW06		14.9	7.45	104.0	33.85	4.81	24.5	Clear, NO, NIS (20100


Minimum volume to be purged except where wells are dry.


(1) These parameters may be considered stable when three consecutive readings (obtained several minutes apart) are within these levels. Source "Victorian Environmental Protection Authority, Groundwater Sampling Guidelines, Publication 669, April 2000".

SWOILOR Down strom > Flowing West at point of Collection Page

of

Date Beg	gin -	End:	16-12-	-21			Drilling Company:	Kleinfelder		E	BORING LOG SW03	
Logged By: M. Kiraz			az			Drill Crew:						
HorVert	t. Da	tum:	Not Av	/ailable			Drilling Equipment: Hand Auger					
Plunge:			-90 de	grees			Drilling Method:	See Drilling N	lethod Column			
Weather	:		overca	ast			Bore Diameter:					
							FIE	ELD EXPLORATIO	DN			
es)	po	Φ	nber	Recovery (NR=No Recovery)	PID / FID (ppmv)	b						
Depth (metres)	Drilling Method	Sample Type	Sample Number	Rec	d) (Graphical Log						
pth (i	ling	nple	nple	sover R=No	1 / FI	aphic						
De	Dri			Rec (NF	ЫП	G			Lithologic Description			
	Ē		SW03_0.0				FILL (silty clay): fine-graine	d, medium plastic	ity, brown, moist, soft, r	ninor sand		
	Hand Auger	Y										
	Hano											
-							_					
		The bo	ore was termi	inated at	approxi	imately	0.1 m. below ground level.		GENERAL NOTES: The boring was backfill	<u>(EL INFORMATION:</u> bserved during drilling o ed with drill cuttings and		
0.2-									December, 2021.			
<i></i>												
-	-											
0.4-												
-												
0.0												
0.6-												
_												
0.8-	4											
-	-											
							PROJECT NO.:					
							20220348.001A		BORING LOO	3 SW03		
ľ			١									
(h	(L	E	INF	EL	D	EA	DRAWN BY:	LZ	Glenlyone Recreat	ion Reserve	4	
1		В	right Peop	ole. Rig	ht Soli	utions	CHECKED BY:	МК	Suttons La	ane		
							DATE: 17	-12-21	Glenlyon, Vi	CIONA		
											PAGE: 1 of 1	

APPENDIX B: LABORATORY REPORTS

CERTIFICATE OF ANALYSIS

Work Order	EM2200148	Page	: 1 of 4	
Client	: KLEINFELDER AUSTRALIA PTY LTD	Laboratory	: Environmental Division N	lelbourne
Contact	: JEREMY MCDONNELL	Contact	: Gregory Gommers	
Address	ELEVEL 1, 95 COVENTRY STREET	Address	: 4 Westall Rd Springvale	VIC Australia 3171
	SOUTH MELBOURNE VIC, AUSTRALIA 3205			
Telephone		Telephone	: +61-3-8549 9600	
Project	: 20223763.001A	Date Samples Received	: 11-Jan-2022 09:50	ANITUR A
Order number	:	Date Analysis Commenced	: 11-Jan-2022	
C-O-C number	:	Issue Date	: 13-Jan-2022 15:34	
Sampler	: MK			Hac-MRA NATA
Site	: Glenlyon EMP			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 4 Work Order : EM2200148 Client : KLEINFELDER AUSTRALIA PTY LTD Project : 20223763.001A

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC02	 	
		Sampling date / time		16-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	EM2200148-001	 	
				Result	 	
EG020F: Dissolved Metals by ICI	P-MS					
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydroc	carbons	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP075(SIM)S: Phenolic Compour	_					
Phenol-d6	13127-88-3	1.0	%	23.6	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	54.9	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	86.5	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	68.1	 	
Anthracene-d10	1719-06-8	1.0	%	82.3	 	
4-Terphenyl-d14	1718-51-0	1.0	%	87.5	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogate	S			
Phenol-d6	13127-88-3	10	51	
2-Chlorophenol-D4	93951-73-6	30	114	
2.4.6-Tribromophenol	118-79-6	26	133	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	35	127	
Anthracene-d10	1719-06-8	44	122	
4-Terphenyl-d14	1718-51-0	44	124	

QUALITY CONTROL REPORT

Work Order	: EM2200148	Page	: 1 of 4
Client	: KLEINFELDER AUSTRALIA PTY LTD	Laboratory	: Environmental Division Melbourne
Contact	: JEREMY MCDONNELL	Contact	: Gregory Gommers
Address	: LEVEL 1, 95 COVENTRY STREET SOUTH MELBOURNE VIC, AUSTRALIA 3205	Address	: 4 Westall Rd Springvale VIC Australia 3171
Telephone	:	Telephone	: +61-3-8549 9600
Project	: 20223763.001A	Date Samples Received	: 11-Jan-2022
Order number	:	Date Analysis Commenced	:11-Jan-2022
C-O-C number	:	Issue Date	13-Jan-2022
Sampler	: MK		IS-Jail-2022
Site	: Glenlyon EMP		
Quote number	: EN/222		Accreditation No
No. of samples received	: 1		Accredited for compliance
No. of samples analysed	: 1		ISO/IEC 17025 - Te

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 4114200)							
EM2200148-001	QC02	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EM2200132-011	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.026	0.028	6.6	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 4114200)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	102	89.0	111	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	104	83.5	111	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.7	83.2	109	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	100	83.1	107	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	98.3	84.6	108	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	100	84.3	110	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	108	86.3	112	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLc	ot: 4114170)								
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	69.0	42.8	114	
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	76.5	48.6	119	
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	74.1	47.0	117	
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	76.7	49.5	119	
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	80.1	49.4	121	
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	78.7	48.4	122	
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	84.9	50.3	124	
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	84.9	50.0	126	
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	85.9	49.4	127	
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	81.6	48.7	126	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	78.9	54.5	134	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	84.5	56.1	134	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 μg/L	84.3	55.6	135	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	84.2	54.4	126	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	83.6	54.5	126	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	83.9	54.4	126	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 4114200)							

Page	: 4 of 4
Work Order	: EM2200148
Client	: KLEINFELDER AUSTRALIA PTY LTD
Project	: 20223763.001A

ub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4114200) - continued						
EM2200132-011	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	99.1	76.6	124
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	101	74.6	118
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	101	71.0	135
		EG020A-F: Copper	7440-50-8	0.2 mg/L	102	76.0	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	101	75.0	133
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	98.8	73.0	131
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	104	75.0	131

QA/QC Compliance Assessment to assist with Quality Review						
: EM2200148	Page	: 1 of 4				
	Laboratory	: Environmental Division Melbourne				
: JEREMY MCDONNELL	Telephone	: +61-3-8549 9600				
: 20223763.001A	Date Samples Received	: 11-Jan-2022				
: Glenlyon EMP	Issue Date	: 13-Jan-2022				
: MK	No. of samples received	: 1				
:	No. of samples analysed	: 1				
	: EM2200148 : KLEINFELDER AUSTRALIA PTY LTD : JEREMY MCDONNELL : 20223763.001A : Glenlyon EMP : MK	: EM2200148 Page : KLEINFELDER AUSTRALIA PTY LTD Laboratory : JEREMY MCDONNELL Telephone : 20223763.001A Date Samples Received : Glenlyon EMP Issue Date : MK No. of samples received				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
Amber Glass Bottle - Unpreserved						
QC02	11-Jan-2022	23-Dec-2021	19			

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Co	unt	Rate	e (%)	Quality Control Specification
QC	Regular	Actual	Expected	
0	3	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
		Count QC Regular 0 3 0 0 3	QC Regular Actual 0 3 0.00	QC Regular Actual Expected 0 3 0.00 10.00

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	e breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)							
QC02	16-Dec-2021				11-Jan-2022	14-Jun-2022	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM))							
QC02	16-Dec-2021	11-Jan-2022	23-Dec-2021	*	12-Jan-2022	20-Feb-2022	✓

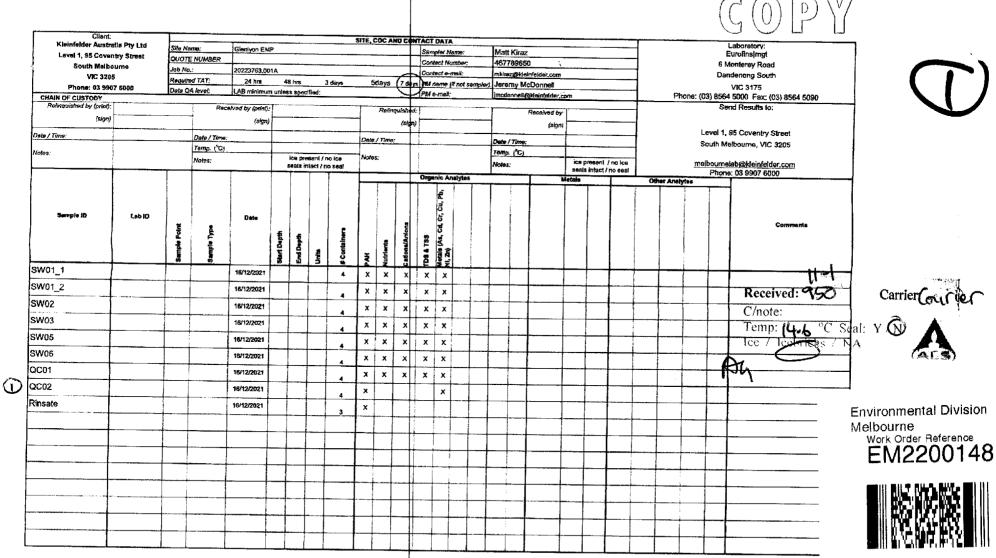
Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount	Rate (%) Qua			Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.


Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.

KLEINFELDER AUSTRALIA PTY LTD

Page 1 of 1

COC number;

Telsphone : + 61-3-8549 9600

851670

CERTIFICATE OF ANALYSIS

Work Order	EM2200200	Page	: 1 of 4	
Client	: KLEINFELDER AUSTRALIA PTY LTD	Laboratory	: Environmental Division M	elbourne
Contact	: MATT KIRAZ	Contact	: Gregory Gommers	
Address	ELEVEL 1, 95 COVENTRY STREET	Address	: 4 Westall Rd Springvale V	/IC Australia 3171
	SOUTH MELBOURNE VIC, AUSTRALIA 3205			
Telephone	:	Telephone	: +61-3-8549 9600	
Project	: 20220348.001A	Date Samples Received	: 12-Jan-2022 10:15	
Order number	:	Date Analysis Commenced	: 12-Jan-2022	
C-O-C number	:	Issue Date	: 14-Jan-2022 16:07	
Sampler	: Matt Kiraz			Hac-MRA NATA
Site	: Glenlyon			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 4 Work Order : EM2200200 Client : KLEINFELDER AUSTRALIA PTY LTD Project : 20220348.001A

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QC02	 	
		Samplii	ng date / time	16-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	EM2200200-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 10	5-110°C)					
Moisture Content		0.1	%	26.6	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP075(SIM)S: Phenolic Compound Su	urrogates					
Phenol-d6	13127-88-3	0.5	%	88.3	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	93.4	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	91.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	104	 	
Anthracene-d10	1719-06-8	0.5	%	107	 	
4-Terphenyl-d14	1718-51-0	0.5	%	103	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133

QUALITY CONTROL REPORT

Work Order	: EM2200200	Page	: 1 of 3	
Client	: KLEINFELDER AUSTRALIA PTY LTD	Laboratory	: Environmental Division Melbourne	
Contact	: MATT KIRAZ	Contact	: Gregory Gommers	
Address	: LEVEL 1, 95 COVENTRY STREET SOUTH MELBOURNE VIC, AUSTRALIA 3205	Address	: 4 Westall Rd Springvale VIC Australia 3171	
Telephone	:	Telephone	: +61-3-8549 9600	
Project	: 20220348.001A	Date Samples Received	: 12-Jan-2022	
Order number	:	Date Analysis Commenced	: 12-Jan-2022	
C-O-C number	:	Issue Date	: 14-Jan-2022	
Sampler	: Matt Kiraz		Hac-MRA	NATA
Site	: Glenlyon			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 2			d for compliance with
No. of samples analysed	: 1		IS	O/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL	b-Matrix: SOIL					Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA055: Moisture Co	ntent (Dried @ 105-1	10°C) (QC Lot: 4116247)							
EM2200200-001	QC02	EA055: Moisture Content		0.1	%	26.6	27.9	4.8	0% - 20%
EP075(SIM)B: Polyn	uclear Aromatic Hyd	Irocarbons (QC Lot: 4116237)							
EM2200200-001 QC02	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 4116237)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	93.1	85.7	123	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	87.3	81.0	123	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	96.4	83.6	120	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	94.8	81.3	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	88.9	79.4	123	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	91.7	81.7	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	83.3	78.3	124	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	86.4	79.9	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	80.8	76.9	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	90.2	80.9	130	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	73.0	70.0	121	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	92.5	80.4	130	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	77.8	70.2	123	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	75.0	67.9	122	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	75.8	65.8	123	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	82.2	65.8	127	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

	QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: EM2200200	Page	: 1 of 4					
Client		Laboratory	: Environmental Division Melbourne					
Contact	: MATT KIRAZ	Telephone	: +61-3-8549 9600					
Project	: 20220348.001A	Date Samples Received	: 12-Jan-2022					
Site	: Glenlyon	Issue Date	: 14-Jan-2022					
Sampler	: Matt Kiraz	No. of samples received	: 2					
Order number	:	No. of samples analysed	: 1					
		No. Or samples analyseu	. 1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matri	x:	SO	IL

Method	traction / Preparation						
Container / Client Sample ID(s)	Date extracted	Date extracted Due for extraction		Date analysed	Due for analysis	Days	
			overdue			overdue	
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved							
QC02				12-Jan-2022	30-Dec-2021	13	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved							
QC02	12-Jan-2022	30-Dec-2021	13				

Outliers : Frequency of Quality Control Samples

Matrix: SOIL							
Quality Control Sample Type		Co	unt		Rate	e (%)	Quality Control Specification
Method	QC		Regular	A	Actual	Expected	
Matrix Spikes (MS)							
PAH/Phenols (SIM)	0		1		0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
QC02	16-Dec-2021				12-Jan-2022	30-Dec-2021	*
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))							
QC02	16-Dec-2021	12-Jan-2022	30-Dec-2021	*	13-Jan-2022	21-Feb-2022	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification										
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification				
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)											
Moisture Content	EA055	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
PAH/Phenols (SIM)	EP075(SIM)	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Laboratory Control Samples (LCS)											
PAH/Phenols (SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Method Blanks (MB)											
PAH/Phenols (SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Matrix Spikes (MS)											
PAH/Phenols (SIM)	EP075(SIM)	0	1	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard				

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

CHAIN OF CUSTODY Relinquished by (print):			Rece	elved by (print)	:				Τ_	Relinguisi	ed:				T	F	Received by						Send Results to:		
(sign)			-	(sign					-	(s	ign)				1		(sign)	-	·/			Leve	l 1, 95 Coventry Street		
Date / Time:			Date / Time:						Date	/ Time:					Date /	Time:							h Melbourne, VIC 3205		N
lotes:			Temp. (°C)		-	ice ore	sent / n	oice	Note	s:					Temp.				present /			malha	urnelab@kleinfelder.com		
			Notes:			seals in	ntact / no	seal							Notes:			seals	sjintact /			P	hone: 03 9907 6000		
									-			ganic A	ланутез	<u> </u>				Metals	1	Othe	er Analyi	tes			
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	AH	tor D													Comm	ents	
SS15_4_0.0-0.1		1	Soil	16/12/2021	+	1		1	×		╈			1					1					<u> </u>	
SS15_4_0.3-0.4			Soil	16/12/2021				1		x					1				1						-
SS15_5_0.0-0.1			Soil	16/12/2021				1	×																
SS15_5_0.3-0.4			Soil	16/12/2021				1		x											-				
SS15_6_0.0-0.1			Soil	16/12/2021				1	×																
SS15_6_0.3-0.4			Soil	16/12/2021				1		x															1 171
SS29_1_0.0_0.1			Soil	16/12/2021				1	x																
S29_1_0.4_0.5			Soll	16/12/2021				1		x															
S29_2_0.0_0.1			Soil	16/12/2021				1	x																
S29_2_0.4_0.5			Soil	16/12/2021				1		×															
S29_3_0.0_0.1			Soil	16/12/2021				1	x																Environmental Divisi
SS29_3_0.4_0.5			Soil	16/12/2021				1		×															Melbourne
\$\$29_4_0.0_0.1			Soil	16/12/2021				1	x																Work Order Reference
SS29_4_0.4_0,5			Soil	16/12/2021				1		×															EM220020
\$29_5_0.0_0.1			Soil	16/12/2021		<u> </u>		1	x]				
\$29_5_0,4_0.5			Soil	16/12/2021				1		×															
S29_6_0.0_0.1			Soil	16/12/2021				1	x																
S29_6_0.4_0.5			Soil	16/12/2021				1		×	\parallel		 												
W03_0.0_0.1			Soil	16/12/2021				1	×	x			ļ												gentili mit 'nnti"t'n ff" tin jool
1			Clay Fragmer	16/12/2021	<u> </u>			1	×											 				<u></u>	Telephone - + 51-3-8549 9600
2C01			Soil	16/12/2021				1	x		\parallel	_								 					-1
C02			Soil	16/12/2021				1	×		\square	_	ļ							 			PLEASE FORW	ARD TO AL	s
003	<u>-</u>		Soil	16/12/2021				1		x	Щ														
Zeling.	lisha 1210	20	by	2 8A	50	,\]-	ะา	al	つ						~	/not emp ce /	ived: e: :: Igebri			Carrie	er: ((our	ier		

CHAIN OF CUSTODY																			 			Sen	d Results to:
Relinquished by (print):			Rec	elved by (print):						Relinquished:					R	leceived by:							
(sign)			1	(sign)					1	(sign)						(sign)					Lev	vel 1, 9	95 Coventry Street
Date / Time:	·. · ·		Date / Time:						Date /	/ Time:				Date ,	Time:						Sou	uth Me	bourne, VIC 3205
			Temp. (⁰ C)											Temp	. (°C)								
Notes:			Notes:			ce pres eals int			Notes	:				Notes	r.			resent / intact/r					lab@kleinfelder.com e: 03 9907 6000
		1									Organ	ilc Analy	rtes			N	etals		Othe	er Analyt	18 5		
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	РАН	П													Comments
QC04			Soil	16/12/2021				1		×													PLEASE FORWARD TO ALS
QC05			Water	16/12/2021				3	x														
																				-			
			1								1								 				
		<u> </u>	I								Щ.,												

Autorah on 12/01 at som

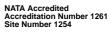
Client:								s	ITE, COC	AND	ONTAC	T DAT	1							[aboratory:
Kleinfelder Australi	ia Pty Ltd	Site Nai	me:	Glenlyon							Sa	ampler l	lame:		Matt Kiraz								E	urofins mgt
Level 1, 95 Covent	-	QUOTE	NUMBER									ontact N	umber:		467789650									onterey Road
South Melbou		Job No.		20220348.001						-		ontact e			mkiraz@klein					-				denong South
VIC 3205 Phone: 03 9907		Require		24 hrs		hrs		days	5da	⊻{ 7			(if not sa	mpler)							Pho	no: (03		VIC 3175 5000 Fax: (03) 8564 5090
CHAIN OF CUSTODY	6000	Data Q/	A level:	LAB minimum	unless	specifi	ed:					M e-mai			<u>]imcdonnell@</u>	kleinfelder.cor	<u>n</u>				FIL	une. (03	<u> </u>	d Results to:
Relinquished by (print):		·	Rea	eived by (print):					F	Relinquis	hed					Received by:				1			00	
(sign)				(sign)]	(-	sign)					(sign)]		Le	evel 1, 9	95 Coventry Street
Date / Time:			Date / Time						Date / T	ime:					Date / Time:					4		Sc	outh Me	lbourne, VIC 3205
Notes:			Temp. (°C)						Notes:						Temp. (°C)		ion on	esent /	no inc	-		mal	hourno	ab@kleinfelder.com
NOICA.			Notes:				sent / no tact / по		1.0000						Notes:			intact / r						: 03 9907 6000
					<u> </u>						0	rganic ,	Analytes	;		N	letals			Oti	ter Analy	ytes		
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	s	# Containers																Comments
		San	Sar		Star	End	Units	Ŭ #	PAH	Ногр														
SS27_1_0.0_0.1	- <u> </u>		Soil	16/12/2021				1	x															
SS27_1_0.4_0.5			Soil	16/12/2021				1		х														
SS27_2_0.0_0.1			Soil	16/12/2021				1	x															
SS27_2_0.4_0.5			Soil	16/12/2021				1		х														
SS27_3_0.0_0.1			Soil	16/12/2021				1	x															
SS27_3_0.4_0.5			Soil	16/12/2021				1		х														
SS27_4_0.0_0.1			Soil	16/12/2021				1	x															
SS27_4_0.4_0.5			Soil	16/12/2021				1		x														
SS27_5_0.0_0.1			Soil	16/12/2021				1	×													-		
SS27_5_0.4_0.5			Soil	16/12/2021				1		х														
SS27_6_0.0_0.1			Soil	16/12/2021				1	x					<u> </u>										
SS27_6_0.4_0.5			Soil	16/12/2021				1		x				<u> </u>										
SS15_1_0.0-0.1			Soil	16/12/2021				1	x															
SS15_1_0.3-0.4			Soil	16/12/2021		ļ		1		x				_	ļ	ļ								
SS15_2_0.0-0.1			Soil	16/12/2021				1	x					-									-	
SS15_2_0.3-0.4		_	Soil	16/12/2021				1		x				-							ļ		<u> </u>	
SS15_3_0.0-0.1			Soil	16/12/2021		<u> </u>		1	X					-							<u> </u>	-		
SS15_3_0.3-0.4			Soil	16/12/2021				1		x														

CHAIN OF CUSTODY			· · · · · · · · · · · · · · · · · · ·						1	"		1							 <u> </u>			Ser	nd Results to:
Relinguished by (print):			Rece	eived by (print): (sign)					-	Relin	quished (sign)			 _	R	eceived by: (sign)							
(sign)				[3/9/1]	-	• •										(3917)							95 Coventry Street
Date / Time:			Date / Time: Temp. (°C)						Date .	/ Time.	;			Date / T Temp. (So	uth Me	elbourne, VIC 3205
Notes:			Notes:				sent / ni tact / no		Notes	s:				Notes:				resent / intact / i	1		<u>meit</u>	Dourne	lab@kleinfelder.com a: 03 9907 6000
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	PAH	НОГЪ													Comments
SS15_4_0.0-0.1	<u> </u>		Soil	16/12/2021				1	X														
SS15_4_0.3-0.4			Soil	16/12/2021				1		x													
SS15_5_0.0-0.1		1	Soil	16/12/2021			1	1	×														
SS15_5_0.3-0.4			Soil	16/12/2021				1		x									 				
SS15_6_0.0-0.1			Soil	16/12/2021				1	x														
SS15_6_0.3-0.4			Soil	16/12/2021				1		x											1		
SS29_1_0.0_0.1		1	Soil	16/12/2021				1	x														
SS29_1_0.4_0.5			Soil	16/12/2021				1		X													
SS29_2_0.0_0.1			Soil	16/12/2021				1	x														
SS29_2_0.4_0.5			Soil	16/12/2021				1		x													
SS29_3_0.0_0.1			Soil	16/12/2021				1	х														
SS29_3_0.4_0.5			Soil	16/12/2021				1		x													
SS29_4_0.0_0.1			Soil	16/12/2021				1	x														
SS29_4_0.4_0.5			Soil	16/12/2021				1		X													
\$\$29_5_0.0_0.1			Soil	16/12/2021				1	x														
SS29_5_0.4_0.5			Soil	16/12/2021				1		x													
SS29_6_0.0_0.1			Soil	16/12/2021				1	x														
SS29_6_0.4_0.5			Soil	16/12/2021				1		X		 											
SW03_0.0_0.1			Soil	16/12/2021				1	x	X													
S1			Clay Fragme	r 16/12/2021				1	x													ļ	
QC01			Soil	16/12/2021				1	x														
QC02			Soil	16/12/2021				1	×		<u> </u>				\square								PLEASE FORWARD TO ALS
QC03			Soil	16/12/2021				1		Х			ic Analy				etals			ier Analy			

CHAIN OF CUSTODY												1								Ser	nd Results to:
Relinquished by (print):			Rec	eived by (print):						Relind	quished				F	Received by:					
(sign)				(sign)							(sign]		(sign)]	Le	vel 1, 9	95 Coventry Street
Date / Time:			Date / Time:						Date /	/ Time:				Date /	Time:				So	outh Me	elbourne, VIC 3205
			Temp. (°C)											Temp.	(°C)			 _			
Notes:			Notes:			ice pres seals in			Notes					Notes:			resent / intact / r				<u>lab@kleinfelder.com</u> e: 03 9907 6000
Sample /D	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	РАН	НОГР											Comments
QC04			Soil	16/12/2021				1		x											PLEASE FORWARD TO AL
QC05			Water	16/12/2021				3	х												
		1									<u> </u>										

Kleinfelder Australia Pty Ltd (VIC) Level 1, 95 Coventry St South Melbourne VIC 3205

Attention:


Jeremy McDonnell

Report Project name Project ID Received Date 854503-S-V2 GLENLYON 20220348.001A Jan 11, 2022

Client Sample ID			SS27_1_0.0-0.1	SS27_2_0.0-0.1	SS27_3_0.0-0.1	SS27_4_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05279	M22-Ja05280	M22-Ja05281	M22-Ja05282
Date Sampled			Dec 15, 2022	Dec 17, 2022	Dec 19, 2022	Dec 21, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.6	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.9	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.3	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.0	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	9.1	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	108	105	114	104
p-Terphenyl-d14 (surr.)	1	%	102	141	108	144
% Moisture	1	%	26	37	25	35

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			SS27_5_0.0-0.1	SS27_6_0.0-0.1	SS15_1_0.0-0.1	SS15_2_0.0-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05283	M22-Ja05284	M22-Ja05285	M22-Ja05286
Date Sampled			Dec 23, 2022	Dec 25, 2021	Dec 27, 2022	Dec 29, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	15	< 0.5	2.8	6.4
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	15	0.6	3.0	6.7
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	15	1.2	3.3	6.9
Acenaphthene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1.2	< 0.5	< 0.5	0.6
Benz(a)anthracene	0.5	mg/kg	4.2	< 0.5	0.8	1.9
Benzo(a)pyrene	0.5	mg/kg	10.0	< 0.5	2.0	4.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	18	< 0.5	3.9	8.1
Benzo(g.h.i)perylene	0.5	mg/kg	4.6	< 0.5	0.8	1.5
Benzo(k)fluoranthene	0.5	mg/kg	6.5	< 0.5	1.6	3.8
Chrysene	0.5	mg/kg	6.4	< 0.5	1.3	3.0
Dibenz(a.h)anthracene	0.5	mg/kg	1.8	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	14	< 0.5	3.1	6.2
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	6.4	< 0.5	1.1	2.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	5.2	< 0.5	1.0	2.1
Pyrene	0.5	mg/kg	13	< 0.5	2.9	5.8
Total PAH*	0.5	mg/kg	92	< 0.5	18.5	40
2-Fluorobiphenyl (surr.)	1	%	109	118	106	136
p-Terphenyl-d14 (surr.)	1	%	105	116	102	128
% Moisture	1	%	28	32	24	17

Client Sample ID Sample Matrix			SS15_3_0.0-0.1 Soil	SS15_4_0.0-0.1 Soil	SS15_5_0.0-0.1 Soil	SS15_6_0.0-0.1 Soil
Eurofins Sample No.			M22-Ja05287	M22-Ja05288	M22-Ja05289	M22-Ja05290
Date Sampled			Dec 31, 2022	Jan 02, 2023	Jan 04, 2023	Jan 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	2.7	25	5.6	3.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	2.9	25	5.6	3.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	3.2	25	5.6	3.5
Acenaphthene	0.5	mg/kg	< 0.5	1.3	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	2.4	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.7	6.2	1.3	0.8
Benzo(a)pyrene	0.5	mg/kg	2.0	17	3.6	2.2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	3.1	29	7.1	4.1
Benzo(g.h.i)perylene	0.5	mg/kg	0.7	5.2	1.4	0.9
Benzo(k)fluoranthene	0.5	mg/kg	1.6	13	2.5	1.8
Chrysene	0.5	mg/kg	1.1	10	2.1	1.2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	2.1	0.7	< 0.5
Fluoranthene	0.5	mg/kg	3.0	26	5.0	3.2
Fluorene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.1	8.4	2.1	1.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			SS15_3_0.0-0.1 Soil	SS15_4_0.0-0.1 Soil	SS15_5_0.0-0.1 Soil	SS15_6_0.0-0.1 Soil
Eurofins Sample No.			M22-Ja05287	M22-Ja05288	M22-Ja05289	M22-Ja05290
Date Sampled			Dec 31, 2022	Jan 02, 2023	Jan 04, 2023	Jan 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Phenanthrene	0.5	mg/kg	0.9	8.3	1.3	0.9
Pyrene	0.5	mg/kg	2.8	23	4.6	2.9
Total PAH*	0.5	mg/kg	17	152.4	31.7	19.2
2-Fluorobiphenyl (surr.)	1	%	140	120	124	132
p-Terphenyl-d14 (surr.)	1	%	141	109	130	140
% Moisture	1	%	14	17	16	16

Client Sample ID			SS29_1_0.0-0.1	SS29_2_0.0-0.1	SS29_3_0.0-0.1	SS29_4_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05291	M22-Ja05292	M22-Ja05293	M22-Ja05294
Date Sampled			Jan 08, 2023	Jan 10, 2023	Jan 12, 2023	Jan 14, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	26	1.2	6.3	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	26	1.5	6.3	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	27	1.8	6.3	1.2
Acenaphthene	0.5	mg/kg	2.1	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	3.2	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	9.9	< 0.5	1.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	19	0.9	4.0	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	35	1.9	7.7	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	8.3	< 0.5	1.8	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	12	0.7	2.9	< 0.5
Chrysene	0.5	mg/kg	15	< 0.5	2.3	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Fluoranthene	0.5	mg/kg	30	1.2	5.2	< 0.5
Fluorene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	12	0.8	2.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	9.7	< 0.5	1.7	< 0.5
Pyrene	0.5	mg/kg	27	1.1	5.1	< 0.5
Total PAH*	0.5	mg/kg	183.9	6.6	35.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	116	138	133	97
p-Terphenyl-d14 (surr.)	1	%	118	127	123	135
% Moisture	1	%	29	28	32	31

Client Sample ID Sample Matrix			SS29_5_0.0-0.1 Soil	SS29_6_0.0-0.1 Soil	SW03_0.00.1 Soil	QC01 Soil
•						
Eurofins Sample No.			M22-Ja05295	M22-Ja05296	M22-Ja05297	M22-Ja05298
Date Sampled			Jan 16, 2023	Jan 18, 2023	Jan 20, 2023	Jan 21, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.4	5.2	< 0.5	2.1
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.7	5.2	0.6	2.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.0	5.2	1.2	2.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.2	< 0.5	0.6
Benzo(a)pyrene	0.5	mg/kg	1.1	3.3	< 0.5	1.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	1.9	6.2	< 0.5	2.8
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.4	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.9	2.7	< 0.5	1.3
Chrysene	0.5	mg/kg	0.6	1.9	< 0.5	1.0
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	1.4	4.5	< 0.5	2.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.6	2.1	< 0.5	0.7
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.5	< 0.5	0.7
Pyrene	0.5	mg/kg	1.3	4.2	< 0.5	2.3
Total PAH*	0.5	mg/kg	7.8	29.6	< 0.5	13.4
2-Fluorobiphenyl (surr.)	1	%	109	114	109	133
p-Terphenyl-d14 (surr.)	1	%	102	113	108	137
% Moisture	1	%	35	29	29	27

Client Sample ID Sample Matrix			s1 Solid
Eurofins Sample No.			M22-Ja05339
Date Sampled			Dec 15, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	140
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	140
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	140
Acenaphthene	0.5	mg/kg	14
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	8.7
Benz(a)anthracene	0.5	mg/kg	70
Benzo(a)pyrene	0.5	mg/kg	89
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	80
Benzo(g.h.i)perylene	0.5	mg/kg	100
Benzo(k)fluoranthene	0.5	mg/kg	71
Chrysene	0.5	mg/kg	79
Dibenz(a.h)anthracene	0.5	mg/kg	18
Fluoranthene	0.5	mg/kg	120
Fluorene	0.5	mg/kg	5.0
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	54
Naphthalene	0.5	mg/kg	2.3

Client Sample ID Sample Matrix Eurofins Sample No.			s1 Solid M22-Ja05339
Date Sampled			Dec 15, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Phenanthrene	0.5	mg/kg	57
Pyrene	0.5	mg/kg	120
Total PAH*	0.5	mg/kg	888
2-Fluorobiphenyl (surr.)	1	%	98
p-Terphenyl-d14 (surr.)	1	%	88
% Moisture	1	%	5.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 21, 2022	14 Davs
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water	Webbearte	001121, 2022	14 Duyo
% Moisture	Melbourne	Jan 12, 2022	14 Davs
- Method: LTM-GEN-7080 Moisture			

	eurofins				Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty	Ltd		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: w	ww.eurofins.com.au	Envi	ronment	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254		Unit F3, Building F 5 16 Mars Road Lane Cove West NSW 2066			NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
	mpany Name: dress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205	•	td (VIC).			R P	rder l eport hone: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM	
	oject Name: oject ID:									Eurofins Analytical S	Services Manager : H	arry Bacalis			
		Sa	mple Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	54		х	Х	Х	Х						
		- NATA # 1261													
		y - NATA # 1261						-							
		y - NATA # 1261		9											
	n Laboratory - M rnal Laboratory	NATA # 2377 Sit ,	ie # 23/0												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	SS27_1_0.0- 0.1	Dec 15, 2022		Soil	M22-Ja05279			x	x						
2	SS27_2_0.0- 0.1	Dec 17, 2022		Soil	M22-Ja05280			x	x						
3	SS27_3_0.0- 0.1	Dec 19, 2022		Soil	M22-Ja05281			х	x						
4	SS27_4_0.0- 0.1	Dec 21, 2022		Soil	M22-Ja05282			х	х						
5	SS27_5_0.0- 0.1	Dec 23, 2022		Soil	M22-Ja05283			x	х						
	SS27_6_0.0-	Dec 25, 2021	1	Soil	M22-Ja05284	1	1	X	X						

	eurofins			Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty L	.td		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: w	www.eurofins.com.au EnviroSales@eurofins	Envi	ronment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 125-	ey Road Unit F3, Building F ng South VIC 3175 16 Mars Road 61 3 8564 5000 Lane Cove West NSW 2066			NSW 200	NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	ompany Name: Idress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205	-			R Pl	rder I eport hone: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM	
	oject Name: oject ID:	01A								Eurofins Analytical S	ervices Manager : H	arry Bacalis		
		mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set							
Mell	bourne Laborate	ory - NATA # 12	61 Site # 1254		х	Х	Х	х						
Syd	ney Laboratory	- NATA # 1261 \$	Site # 18217											
		y - NATA # 1261												
		/ - NATA # 1261						$\left - \right $						
		NATA # 2377 Sit ,	e # 2370											
EXTE	ernal Laboratory	,												
7	SS15_1_0.0- 0.1	Dec 27, 2022	Soil	M22-Ja05285			х	x						
8	SS15_2_0.0- 0.1	Dec 29, 2022	Soil	M22-Ja05286			х	x						
9	SS15_3_0.0- 0.1	Dec 31, 2022	Soil	M22-Ja05287			х	x						
10	SS15_4_0.0- 0.1	Jan 02, 2023	Soil	M22-Ja05288			х	x						
11 12	SS15_5_0.0- 0.1 SS15_6_0.0-	Jan 04, 2023 Jan 06, 2023	Soil	M22-Ja05289 M22-Ja05290			Х	X						
	0.1	Jan 00, 2023	3011	10122-0400290			Х	Х						

	eurofins			Eurofins Environme ABN: 50 005 085 521 Melbourne		sting /	Austra	lia Pty L	Brisbane	Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth	Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland Christchurch		
	ww.eurofins.com.au EnviroSales@eurofins		nt Testing	6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	nit F3, I 6 Mars ane Cov hone : -	Road ve West -61 2 99		1/21 Smallwood Place Murarrie QLD 4172 6 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	mpany Name: dress:	Kleinfelder Australia Pt Level 1, 95 Coventry S South Melbourne VIC 3205				R	rder f eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM	
	oject Name: oject ID:								Eurofins Analytical S	ervices Manager : H	arry Bacalis			
		Sample Deta	ail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melk	ourne Laborato	ory - NATA # 1261 Site # '	1254		Х	Х	Х	Х						
Sydr	ey Laboratory	- NATA # 1261 Site # 182	17											
Bris	pane Laboratory	/ - NATA # 1261 Site # 20	794											
May	ield Laboratory	- NATA # 1261 Site # 25	079			ļ								
		IATA # 2377 Site # 2370												
	rnal Laboratory						<u> </u>							
	SS29_1_0.0- 0.1	Jan 08, 2023	Soil	M22-Ja05291			х	x						
	SS29_2_0.0- 0.1	Jan 10, 2023	Soil	M22-Ja05292			х	х						
15	SS29_3_0.0- 0.1	Jan 12, 2023	Soil	M22-Ja05293			х	x						
	SS29_4_0.0- 0.1	Jan 14, 2023	Soil	M22-Ja05294			х	x						
	SS29_5_0.0- 0.1	Jan 16, 2023	Soil	M22-Ja05295			х	x						
18	SS29_6_0.0- 0.1	Jan 18, 2023	Soil	M22-Ja05296			х	х						
-		Jan 20, 2023	Soil	M22-Ja05297			Х	х						

	eurofins			Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty L	td		ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: w	ww.eurofins.com.au EnviroSales@eurofins	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	0 Lane Cove West NSW 2066			NSW 200	NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
	mpany Name: dress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205				R	rder N eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	? PM	
	oject Name: oject ID:	GLENLYON 20220348.00	1A								Eurofins Analytical S	ervices Manager : Ha	arry Bacalis	
		Sa	mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melk	ourne Laborate	ory - NATA # 12	61 Site # 1254		Х	Х	Х	х						
		- NATA # 1261 \$												
		y - NATA # 1261												
		<u>/ - NATA # 1261</u>					<u> </u>							
		NATA # 2377 Sit	e # 23/U											
Exte	rnal Laboratory													
20	QC01	Jan 21, 2023	Soil	M22-Ja05298			х	x						
21	QC03	Jan 22, 2023	Soil	M22-Ja05299	x									
22	QC05	Jan 23, 2023	Water	M22-Ja05300			х							
23	SS27_1_0.4- 0.5	Dec 16, 2022	Soil	M22-Ja05301	x									
24	SS27_2_0.4- 0.5	Dec 18, 2022	Soil	M22-Ja05302	x									
25	SS27_3_0.4- 0.5	Dec 20, 2022	Soil	M22-Ja05303	х									
26	SS27_4_0.4- 0.5	Dec 22, 2022	Soil	M22-Ja05304	х									

	eurofins			Eurofins Environme ABN: 50 005 085 521 Melbourne		sting /	Austra	lia Pty I	.td Brisbane	Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth	Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland Christchurch		
web: w	ww.eurofins.com.au EnviroSales@eurofins	Environment	6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	Unit F3, Building F 175 16 Mars Road Lane Cove West NSW 2066			NSW 20	1/21 Smallwood Place Murarrie QLD 4172 66 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
	mpany Name: dress:	Kleinfelder Australia Pty L Level 1, 95 Coventry St South Melbourne VIC 3205	td (VIC)			R(Pl	rder N eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM	
	oject Name: oject ID:								Eurofins Analytical S	ervices Manager : Ha	arry Bacalis			
		Sample Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melb	ourne Laborato	ory - NATA # 1261 Site # 125	4		Х	Х	Х	х						
Sydr	ney Laboratory	- NATA # 1261 Site # 18217												
		y - NATA # 1261 Site # 2079												
		/ - NATA # 1261 Site # 25079												
		NATA # 2377 Site # 2370												
27	rnal Laboratory SS27_5_0.4-	Dec 24, 2022	Soil	M22-Ja05305	x									
28	0.5 SS27_6_0.4- 0.5	Dec 26, 2022	Soil	M22-Ja05306	x									
29	SS15_1_0.3- 0.4	Dec 28, 2022	Soil	M22-Ja05307	x									
30	SS15_2_0.3- 0.4	Dec 30, 2022	Soil	M22-Ja05308	x									
31	SS15_3_0.3- 0.4	Jan 01, 2023	Soil	M22-Ja05309	х									
32	SS15_4_0.3- 0.4	Jan 03, 2023	Soil	M22-Ja05310	х									
33	SS15_5_0.3-	Jan 05, 2023	Soil	M22-Ja05311	Х									

web: w	eurofi	Envi	ronment Testing	Eurofins Environme ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3' Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	S U 175 16 La F	ydney nit F3, E 6 Mars I ane Cov hone : 4	Building Road re West 61 2 99	F NSW 2	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794		Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Eurofins Environment NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	t Testing NZ Limited Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Co	EnviroSales@eurofins		,		IN.	R	rder f eport none: ax:	No.: #:	854503 03 9907 6000 03 9907 6001	NATA # 1261 Site # 25079	Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM
	oject Name: oject ID:	GLENLYON 20220348.00	01A								Eurofins Analytical S	Gervices Manager : Ha	arry Bacalis
		Sa	mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Mell	bourne Laborate	ory - NATA # 12	61 Site # 1254		Х	Х	х	х					
		- NATA # 1261 \$											
		y - NATA # 1261											
		y - NATA # 1261											
	ernal Laboratory - I	NATA # 2377 Sit	10 # 23/0										
34	SS15_6_0.3- 0.4	Jan 07, 2023	Soil	M22-Ja05312	х								
35	SS29_1_0.4- 0.5	Jan 09, 2023	Soil	M22-Ja05313	х								
36	SS29_2_0.4- 0.5	Jan 11, 2023	Soil	M22-Ja05314	х								
37	SS29_3_0.4- 0.5	Jan 13, 2023	Soil	M22-Ja05315	Х								
38	SS29_4_0.4- 0.5	Jan 15, 2023	Soil	M22-Ja05316	Х								
39	SS29_5_0.4- 0.5	Jan 17, 2023	Soil	M22-Ja05317	Х								

🎎 eurofi	seurofins							ilia Pty	.td	Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
b: www.eurofins.com.au nail: EnviroSales@eurofins.com				Melbourne Sydney 6 Monterey Road Unit F3, Bui Dandenong South VIC 3175 16 Mars Roo Phone : +61 3 8564 5000 Lane Cove NATA # 1261 Site # 1254 Phone : +61				t NSW 20 900 8400	Brisbane 1/21 Smallwood Place Murarie QLD 4172 66 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 7	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205		d (VIC)			R P	rder I eport hone: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM
Project Name: Project ID:	GLENLYON 20220348.00)1A									Eurofins Analytical S	ervices Manager : H	arry Bacalis
	Sa	mple Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Melbourne Laborato	ry - NATA # 12	61 Site # 1254	4		Х	Х	Х	Х					
Sydney Laboratory -	NATA # 1261	Site # 18217											
Brisbane Laboratory	/ - NATA # 126	I Site # 20794	,										
Mayfield Laboratory	- NATA # 1261	Site # 25079				1							
Perth Laboratory - N	ATA # 2377 Sit	te # 2370											
External Laboratory		I											
0.5	Jan 19, 2023		Soil	M22-Ja05318	x								
	Dec 15, 2022		Solid	M22-Ja05339		X	X	Х					
Test Counts					19	1	22	21					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

•		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.4
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Polycyclic Aromatic Hydrocarl	oons							
Acenaphthene			mg/kg	< 0.5		0.5	Pass	
Acenaphthylene			mg/kg	< 0.5		0.5	Pass	
Anthracene			mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Chrysene			mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5		0.5	Pass	
Fluoranthene			mg/kg	< 0.5		0.5	Pass	
Fluorene			mg/kg	< 0.5		0.5	Pass	
ndeno(1.2.3-cd)pyrene			mg/kg	< 0.5		0.5	Pass	
Naphthalene			mg/kg	< 0.5		0.5	Pass	
Phenanthrene			mg/kg	< 0.5		0.5	Pass	
Pyrene			mg/kg	< 0.5		0.5	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarl	oons							
Acenaphthene			%	85		70-130	Pass	
Acenaphthylene			%	86		70-130	Pass	
Anthracene			%	106		70-130	Pass	
Benz(a)anthracene			%	87		70-130	Pass	
Benzo(a)pyrene			%	105		70-130	Pass	
Benzo(b&j)fluoranthene			%	121		70-130	Pass	
Benzo(g.h.i)perylene			%	82		70-130	Pass	
Benzo(k)fluoranthene			%	101		70-130	Pass	
Chrysene			%	104		70-130	Pass	
Dibenz(a.h)anthracene			%	104		70-130	Pass	
Fluoranthene			%	94		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	73		70-130	Pass	
Phenanthrene			%	116		70-130	Pass	
Pyrene			%	94		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarl		1		Result 1				
Acenaphthene	M22-Ja05285	CP	%	100		70-130	Pass	
Acenaphthylene	M22-Ja05285	CP	%	99		70-130	Pass	
Anthracene	M22-Ja05285	CP	%	115		70-130	Pass	
Benz(a)anthracene	M22-Ja05285	CP	%	71		70-130	Pass	
Benzo(a)pyrene	M22-Ja05285	CP	%	87		70-130	Pass	
Benzo(b&j)fluoranthene	M22-Ja05285	CP	%	101		70-130	Pass	
Benzo(g.h.i)perylene	M22-Ja05285	CP	%	104		70-130	Pass	
Benzo(k)fluoranthene	M22-Ja05285	CP	%	120		70-130	Pass	
Chrysene	M22-Ja05285	CP	%	87		70-130	Pass	
Dibenz(a.h)anthracene	M22-Ja05285	CP	%	87		70-130	Pass	
Fluoranthene	M22-Ja05285	CP	%	108		70-130	Pass	
Fluorene	M22-Ja05285	CP	%	122		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	M22-Ja05285	CP	%	106			70-130	Pass	
Naphthalene	M22-Ja05285	CP	%	81			70-130	Pass	
Phenanthrene	M22-Ja05285	CP	%	91			70-130	Pass	
Pyrene	M22-Ja05285	CP	%	107			70-130	Pass	
Spike - % Recovery				1					
Polycyclic Aromatic Hydrocarbon	IS			Result 1					
Acenaphthene	M22-Ja05295	CP	%	93			70-130	Pass	
Acenaphthylene	M22-Ja05295	CP	%	94			70-130	Pass	
Anthracene	M22-Ja05295	CP	%	107			70-130	Pass	
Benz(a)anthracene	M22-Ja05295	CP	%	98			70-130	Pass	
Benzo(a)pyrene	M22-Ja05295	CP	%	120			70-130	Pass	
Benzo(b&j)fluoranthene	M22-Ja05295	CP	%	95			70-130	Pass	
Benzo(g.h.i)perylene	M22-Ja05295	CP	%	101			70-130	Pass	
Benzo(k)fluoranthene	M22-Ja05295	CP	%	109			70-130	Pass	
Chrysene	M22-Ja05295	CP	%	79			70-130	Pass	
Dibenz(a.h)anthracene	M22-Ja05295	CP	%	83			70-130	Pass	
Fluoranthene	M22-Ja05295	CP	%	92			70-130	Pass	
Fluorene	M22-Ja05295	CP	%	115			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ja05295	CP	%	101			70-130	Pass	
Naphthalene	M22-Ja05295	CP	%	78			70-130	Pass	
Phenanthrene	M22-Ja05295	CP	%	87			70-130	Pass	
Pyrene	M22-Ja05295	CP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					11		1		
•				Result 1	Result 2	RPD			
% Moisture	M22-Ja05279	CP	%	26	26	1.0	30%	Pass	
Duplicate									
Duplicate Polycyclic Aromatic Hydrocarbon	IS			Result 1	Result 2	RPD			
	M22-Ja05284	СР	mg/kg	Result 1 < 0.5	Result 2 < 0.5	RPD <1	30%	Pass	
Polycyclic Aromatic Hydrocarbon		CP CP	mg/kg mg/kg				30% 30%	Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene	M22-Ja05284	-		< 0.5	< 0.5	<1			
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene	M22-Ja05284 M22-Ja05284	СР	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene	M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30%	Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M22-Ja05284	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M22-Ja05284	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M22-Ja05284	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M22-Ja05284	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$ \begin{array}{r} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ \end{array} $	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene	M22-Ja05284	CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthylene	M22-Ja05284	СР СР СР СР СР СР СР СР СР СР	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbon Acenaphthene	M22-Ja05284	CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Benzo(b&j)fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

This report has been revised V2 following repeat analysis. PAH results for sample Ja05286 and Ja05291 have now been replaced by the repeat results.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Savini Suduweli Joseph Edouard Analytical Services Manager Senior Analyst-Organic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

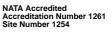
* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Kleinfelder Australia Pty Ltd (VIC) Level 1, 95 Coventry St South Melbourne VIC 3205

Attention:


Jeremy McDonnell

Report Project name Project ID Received Date 854503-S GLENLYON 20220348.001A Jan 11, 2022

Client Sample ID			SS27_1_0.0-0.1	SS27_2_0.0-0.1	SS27_3_0.0-0.1	SS27_4_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05279	M22-Ja05280	M22-Ja05281	M22-Ja05282
Date Sampled			Dec 15, 2022	Dec 17, 2022	Dec 19, 2022	Dec 21, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.6	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.9	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.3	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.0	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	9.1	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	108	105	114	104
p-Terphenyl-d14 (surr.)	1	%	102	141	108	144
% Moisture	1	%	26	37	25	35

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			SS27_5_0.0-0.1	SS27_6_0.0-0.1	SS15_1_0.0-0.1	SS15_2_0.0-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05283	M22-Ja05284	M22-Ja05285	M22-Ja05286
Date Sampled			Dec 23, 2022	Dec 25, 2021	Dec 27, 2022	Dec 29, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	15	< 0.5	2.8	9.3
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	15	0.6	3.0	9.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	15	1.2	3.3	9.3
Acenaphthene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1.2	< 0.5	< 0.5	0.8
Benz(a)anthracene	0.5	mg/kg	4.2	< 0.5	0.8	2.8
Benzo(a)pyrene	0.5	mg/kg	10.0	< 0.5	2.0	6.1
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	18	< 0.5	3.9	11
Benzo(g.h.i)perylene	0.5	mg/kg	4.6	< 0.5	0.8	2.3
Benzo(k)fluoranthene	0.5	mg/kg	6.5	< 0.5	1.6	4.6
Chrysene	0.5	mg/kg	6.4	< 0.5	1.3	4.4
Dibenz(a.h)anthracene	0.5	mg/kg	1.8	< 0.5	< 0.5	0.9
Fluoranthene	0.5	mg/kg	14	< 0.5	3.1	9.4
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	6.4	< 0.5	1.1	3.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	5.2	< 0.5	1.0	3.4
Pyrene	0.5	mg/kg	13	< 0.5	2.9	8.6
Total PAH*	0.5	mg/kg	92	< 0.5	18.5	57.8
2-Fluorobiphenyl (surr.)	1	%	109	118	106	122
p-Terphenyl-d14 (surr.)	1	%	105	116	102	122
% Moisture	1	%	28	32	24	17

Client Sample ID Sample Matrix			SS15_3_0.0-0.1 Soil	SS15_4_0.0-0.1 Soil	SS15_5_0.0-0.1 Soil	SS15_6_0.0-0.1 Soil
Eurofins Sample No.			M22-Ja05287	M22-Ja05288	M22-Ja05289	M22-Ja05290
Date Sampled			Dec 31, 2022	Jan 02, 2023	Jan 04, 2023	Jan 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	2.7	25	5.6	3.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	2.9	25	5.6	3.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	3.2	25	5.6	3.5
Acenaphthene	0.5	mg/kg	< 0.5	1.3	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	2.4	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.7	6.2	1.3	0.8
Benzo(a)pyrene	0.5	mg/kg	2.0	17	3.6	2.2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	3.1	29	7.1	4.1
Benzo(g.h.i)perylene	0.5	mg/kg	0.7	5.2	1.4	0.9
Benzo(k)fluoranthene	0.5	mg/kg	1.6	13	2.5	1.8
Chrysene	0.5	mg/kg	1.1	10	2.1	1.2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	2.1	0.7	< 0.5
Fluoranthene	0.5	mg/kg	3.0	26	5.0	3.2
Fluorene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.1	8.4	2.1	1.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			SS15_3_0.0-0.1 Soil	SS15_4_0.0-0.1 Soil	SS15_5_0.0-0.1 Soil	SS15_6_0.0-0.1 Soil
Eurofins Sample No.			M22-Ja05287	M22-Ja05288	M22-Ja05289	M22-Ja05290
Date Sampled			Dec 31, 2022	Jan 02, 2023	Jan 04, 2023	Jan 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Phenanthrene	0.5	mg/kg	0.9	8.3	1.3	0.9
Pyrene	0.5	mg/kg	2.8	23	4.6	2.9
Total PAH*	0.5	mg/kg	17	152.4	31.7	19.2
2-Fluorobiphenyl (surr.)	1	%	140	120	124	132
p-Terphenyl-d14 (surr.)	1	%	141	109	130	140
% Moisture	1	%	14	17	16	16

Client Sample ID			SS29_1_0.0-0.1	SS29_2_0.0-0.1	SS29_3_0.0-0.1	SS29_4_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22-Ja05291	M22-Ja05292	M22-Ja05293	M22-Ja05294
Date Sampled			Jan 08, 2023	Jan 10, 2023	Jan 12, 2023	Jan 14, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	52	1.2	6.3	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	52	1.5	6.3	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	52	1.8	6.3	1.2
Acenaphthene	0.5	mg/kg	4.1	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	6.8	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	19	< 0.5	1.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	31	0.9	4.0	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	61	1.9	7.7	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	20	< 0.5	1.8	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	14	0.7	2.9	< 0.5
Chrysene	0.5	mg/kg	27	< 0.5	2.3	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	8.3	< 0.5	0.8	< 0.5
Fluoranthene	0.5	mg/kg	43	1.2	5.2	< 0.5
Fluorene	0.5	mg/kg	1.7	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	26	0.8	2.5	< 0.5
Naphthalene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	21	< 0.5	1.7	< 0.5
Pyrene	0.5	mg/kg	40	1.1	5.1	< 0.5
Total PAH*	0.5	mg/kg	323.7	6.6	35.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	131	138	133	97
p-Terphenyl-d14 (surr.)	1	%	134	127	123	135
% Moisture	1	%	29	28	32	31

Client Sample ID Sample Matrix			SS29_5_0.0-0.1 Soil	SS29_6_0.0-0.1 Soil	SW03_0.00.1 Soil	QC01 Soil
•						
Eurofins Sample No.			M22-Ja05295	M22-Ja05296	M22-Ja05297	M22-Ja05298
Date Sampled			Jan 16, 2023	Jan 18, 2023	Jan 20, 2023	Jan 21, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.4	5.2	< 0.5	2.1
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.7	5.2	0.6	2.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.0	5.2	1.2	2.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.2	< 0.5	0.6
Benzo(a)pyrene	0.5	mg/kg	1.1	3.3	< 0.5	1.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	1.9	6.2	< 0.5	2.8
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.4	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.9	2.7	< 0.5	1.3
Chrysene	0.5	mg/kg	0.6	1.9	< 0.5	1.0
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	1.4	4.5	< 0.5	2.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.6	2.1	< 0.5	0.7
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.5	< 0.5	0.7
Pyrene	0.5	mg/kg	1.3	4.2	< 0.5	2.3
Total PAH*	0.5	mg/kg	7.8	29.6	< 0.5	13.4
2-Fluorobiphenyl (surr.)	1	%	109	114	109	133
p-Terphenyl-d14 (surr.)	1	%	102	113	108	137
% Moisture	1	%	35	29	29	27

Client Sample ID Sample Matrix			s1 Solid
Eurofins Sample No.			M22-Ja05339
Date Sampled			Dec 15, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	140
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	140
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	140
Acenaphthene	0.5	mg/kg	14
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	8.7
Benz(a)anthracene	0.5	mg/kg	70
Benzo(a)pyrene	0.5	mg/kg	89
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	80
Benzo(g.h.i)perylene	0.5	mg/kg	100
Benzo(k)fluoranthene	0.5	mg/kg	71
Chrysene	0.5	mg/kg	79
Dibenz(a.h)anthracene	0.5	mg/kg	18
Fluoranthene	0.5	mg/kg	120
Fluorene	0.5	mg/kg	5.0
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	54
Naphthalene	0.5	mg/kg	2.3

Client Sample ID Sample Matrix			s1 Solid
Eurofins Sample No.			M22-Ja05339
Date Sampled			Dec 15, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Phenanthrene	0.5	mg/kg	57
Pyrene	0.5	mg/kg	120
Total PAH*	0.5	mg/kg	888
2-Fluorobiphenyl (surr.)	1	%	98
p-Terphenyl-d14 (surr.)	1	%	88
% Moisture	1	%	5.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 14, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Moisture	Melbourne	Jan 12, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Eurofins Environme ABN: 50 005 085 521	nt Te	sting A	ustra	lia Pty	Ltd		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment	t Testing NZ Limited
web: wv	ww.eurofins.com.au	Envi	ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1) L 4 P	ane Cov hone : +	Road re West ·61 2 99			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205	Coventry St	td (VIC)			R	rder f eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	PM
	oject Name: oject ID:	GLENLYON 20220348.00	01A									Eurofins Analytical S	ervices Manager : Ha	arry Bacalis
		Sa	mple Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	54		Х	Х	х	Х					
		- NATA # 1261 \$							<u> </u>					
		y - NATA # 1261												
		/ - NATA # 1261)										
		NATA # 2377 Sit	e # 2370											
No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID									
	SS27_1_0.0-	Dec 15, 2022	Time	Soil	M22-Ja05279									
	0.1							Х	X					
2	SS27_2_0.0- 0.1	Dec 17, 2022		Soil	M22-Ja05280			х	х					
3	SS27_3_0.0- 0.1	Dec 19, 2022		Soil	M22-Ja05281			х	х					
4	SS27_4_0.0- 0.1	Dec 21, 2022		Soil	M22-Ja05282			х	x					
5	SS27_5_0.0- 0.1	Dec 23, 2022		Soil	M22-Ja05283			х	х					
	SS27_6_0.0-	Dec 25, 2021		Soil	M22-Ja05284			х	Х					

	eurofi	nc		Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty L	.td		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: w	www.eurofins.com.au EnviroSales@eurofins	Environment Testing		6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254		Unit F3, Building F 175 16 Mars Road Lane Cove West NSW 2066 F		NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	ompany Name: Idress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205	-			R Pl	rder M eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM
	oject Name: oject ID:	GLENLYON 20220348.00	01A								Eurofins Analytical S	ervices Manager : H	arry Bacalis
		Sa	mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Mell	bourne Laborate	ory - NATA # 12	61 Site # 1254		Х	Х	Х	х					
Syd	ney Laboratory	- NATA # 1261 \$	Site # 18217										
		y - NATA # 1261											
		/ - NATA # 1261						$\left - \right $					
		NATA # 2377 Sit ,	e # 2370				<u> </u>						
EXTE	ernal Laboratory	,											
7	SS15_1_0.0- 0.1	Dec 27, 2022	Soil	M22-Ja05285			х	x					
8	SS15_2_0.0- 0.1	Dec 29, 2022	Soil	M22-Ja05286			х	x					
9	SS15_3_0.0- 0.1	Dec 31, 2022	Soil	M22-Ja05287			x	x					
10	SS15_4_0.0- 0.1	Jan 02, 2023	Soil	M22-Ja05288			х	x					
11 12	SS15_5_0.0- 0.1 SS15_6_0.0-	Jan 04, 2023 Jan 06, 2023	Soil	M22-Ja05289 M22-Ja05290			X	X					
	0.1	Jan 00, 2023	3011	10122-0400290			Х	Х					

🔅 eurofins			Eurofins Environme ABN: 50 005 085 521 Melbourne		sting /	Austra	lia Pty L	Brisbane	Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth	Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland Christchurch		
	ww.eurofins.com.au EnviroSales@eurofins	Environme	nt Testing	6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	nit F3, I 6 Mars ane Cov hone : -	Road ve West -61 2 99		1/21 Smallwood Place Murarrie QLD 4172 6 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Kleinfelder Australia Pt Level 1, 95 Coventry S South Melbourne VIC 3205				R	rder I eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM
	oject Name: oject ID:	GLENLYON 20220348.001A									Eurofins Analytical S	ervices Manager : H	arry Bacalis
		Sample Deta	ail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Melk	ourne Laborato	ory - NATA # 1261 Site # '	1254		Х	Х	Х	Х					
Sydr	ey Laboratory	- NATA # 1261 Site # 182	17										
Bris	pane Laboratory	/ - NATA # 1261 Site # 20	794										
		- NATA # 1261 Site # 25	079										
		IATA # 2377 Site # 2370				<u> </u>							
	rnal Laboratory						<u> </u>						
	SS29_1_0.0- 0.1	Jan 08, 2023	Soil	M22-Ja05291			х	x					
	SS29_2_0.0- 0.1	Jan 10, 2023	Soil	M22-Ja05292			х	х					
15	SS29_3_0.0- 0.1	Jan 12, 2023	Soil	M22-Ja05293			х	х					
	SS29_4_0.0- 0.1	Jan 14, 2023	Soil	M22-Ja05294			х	x					
	SS29_5_0.0- 0.1	Jan 16, 2023	Soil	M22-Ja05295			х	x					
18	SS29_6_0.0- 0.1	Jan 18, 2023	Soil	M22-Ja05296			х	х					
-		Jan 20, 2023	Soil	M22-Ja05297			Х	х					

🛟 eurofins 👔			Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty L	td		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited			
web: w	ww.eurofins.com.au EnviroSales@eurofins	Environment Testing		6 Monterey Road Uni Dandenong South VIC 3175 16 Phone : +61 3 8564 5000 Lar NATA # 1261 Site # 1254 Pho		6 Mars ane Cov hone : -	ve West -61 2 99		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 56 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	mpany Name: dress:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205				R	rder N eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	? PM	
	oject Name: oject ID:	GLENLYON 20220348.00	1A								Eurofins Analytical S	ervices Manager : Ha	arry Bacalis	
		Sa	mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melk	ourne Laborate	ory - NATA # 12	61 Site # 1254		Х	Х	Х	х						
		- NATA # 1261 \$												
		y - NATA # 1261												
		<u>/ - NATA # 1261</u>					<u> </u>							
		NATA # 2377 Sit	e # 23/U											
Exte	rnal Laboratory													
20	QC01	Jan 21, 2023	Soil	M22-Ja05298			х	x						
21	QC03	Jan 22, 2023	Soil	M22-Ja05299	x									
22	QC05	Jan 23, 2023	Water	M22-Ja05300			х							
23	SS27_1_0.4- 0.5	Dec 16, 2022	Soil	M22-Ja05301	x									
24	SS27_2_0.4- 0.5	Dec 18, 2022	Soil	M22-Ja05302	x									
25	SS27_3_0.4- 0.5	Dec 20, 2022	Soil	M22-Ja05303	х									
26	SS27_4_0.4- 0.5	Dec 22, 2022	Soil	M22-Ja05304	х									

🛟 eurofins				Eurofins Environme ABN: 50 005 085 521 Melbourne		sting /	Austra	lia Pty	Ltd Brisbane	Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth	Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland Christchurch		
web: w	ww.eurofins.com.au EnviroSales@eurofins	Environment	Testing	6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	nit F3, E 6 Mars I ane Cov hone : 4	Road ve West -61 2 99		1/21 Smallwood Place Murarrie QLD 4172 66 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	mpany Name: dress:	Kleinfelder Australia Pty Lt Level 1, 95 Coventry St South Melbourne VIC 3205	d (VIC)			R(Pl	rder M eport none: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	PM	
	oject Name: oject ID:	GLENLYON 20220348.001A									Eurofins Analytical S	ervices Manager : Ha	arry Bacalis	
		Sample Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set						
Melb	ourne Laborato	ory - NATA # 1261 Site # 125	4		Х	Х	Х	х						
Sydr	ney Laboratory	- NATA # 1261 Site # 18217												
		y - NATA # 1261 Site # 20794												
		/ - NATA # 1261 Site # 25079												
		NATA # 2377 Site # 2370												
27	rnal Laboratory SS27_5_0.4- 0.5	Dec 24, 2022	Soil	M22-Ja05305	x									
28	SS27_6_0.4- 0.5	Dec 26, 2022	Soil	M22-Ja05306	х									
29	SS15_1_0.3- 0.4	Dec 28, 2022	Soil	M22-Ja05307	х									
30	SS15_2_0.3- 0.4	Dec 30, 2022	Soil	M22-Ja05308	х									
	SS15_3_0.3- 0.4	Jan 01, 2023	Soil	M22-Ja05309	х									
	SS15_4_0.3- 0.4		Soil	M22-Ja05310	x									
33	SS15_5_0.3-	Jan 05, 2023	Soil	M22-Ja05311	Х									

web: w	eurofi	Envi	ronment Testing	Eurofins Environme ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3' Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	S U 175 10 La	ydney nit F3, E 6 Mars I ane Cov hone : 4	Building Road re West	F NSW 2	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794		Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Eurofins Environment NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	t Testing NZ Limited Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Co	EnviroSales@eurofin: ompany Name: Idress:					R	rder f eport none: ax:	No.: #:	854503 03 9907 6000 03 9907 6001	NATA # 1261 Site # 25079	Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	PM
	oject Name: oject ID:	GLENLYON 20220348.00	01A								Eurofins Analytical S	ervices Manager : Ha	arry Bacalis
		Sa	mple Detail		HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Mell	bourne Laborat	ory - NATA # 12	61 Site # 1254		Х	Х	Х	х					
		- NATA # 1261											
		y - NATA # 1261											
		y - NATA # 1261											
	ernal Laboratory - I	NATA # 2377 Sit	le # 23/U										
	0.4												
34	SS15_6_0.3- 0.4	Jan 07, 2023	Soil	M22-Ja05312	х								
35	SS29_1_0.4- 0.5	Jan 09, 2023	Soil	M22-Ja05313	х								
36	SS29_2_0.4- 0.5	Jan 11, 2023	Soil	M22-Ja05314	х								
37	SS29_3_0.4- 0.5	Jan 13, 2023	Soil	M22-Ja05315	х								
38	SS29_4_0.4- 0.5	Jan 15, 2023	Soil	M22-Ja05316	Х								
39	SS29_5_0.4- 0.5	Jan 17, 2023	Soil	M22-Ja05317	Х								

🔅 eurofii	ns			Eurofins Environme ABN: 50 005 085 521					.td		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
b: www.eurofins.com.au nail: EnviroSales@eurofins.com		Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	175 1 0 L 4 P	6 Mars ane Co hone : ·	ve West +61 2 9			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7674 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	Kleinfelder A Level 1, 95 C South Melbo VIC 3205		d (VIC)			R P	rder I eport hone: ax:	#:	854503 03 9907 6000 03 9907 6001		Received: Due: Priority: Contact Name:	Jan 11, 2022 12:02 Jan 18, 2022 5 Day Jeremy McDonnell	2 PM
Project Name: Project ID:	GLENLYON 20220348.00)1A									Eurofins Analytical S	ervices Manager : H	arry Bacalis
	Sa	mple Detail			HOLD	Sample preparation - crushing	Polycyclic Aromatic Hydrocarbons	Moisture Set					
Melbourne Laborato	ory - NATA # 12	61 Site # 1254	4		Х	Х	Х	Х					
Sydney Laboratory -	NATA # 1261	Site # 18217											
Brisbane Laboratory	/ - NATA # 126	I Site # 20794											
Mayfield Laboratory	- NATA # 1261	Site # 25079											
Perth Laboratory - N	IATA # 2377 Sit	te # 2370						<u> </u>					
External Laboratory													
40 SS29_6_0.4- 0.5	Jan 19, 2023		Soil	M22-Ja05318	x								
	Dec 15, 2022		Solid	M22-Ja05339		X	X	Х					
Test Counts					19	1	22	21					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

erinte		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.4
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Polycyclic Aromatic Hydrocarl	oons							
Acenaphthene			mg/kg	< 0.5		0.5	Pass	
Acenaphthylene			mg/kg	< 0.5		0.5	Pass	
Anthracene			mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Chrysene			mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5		0.5	Pass	
Fluoranthene			mg/kg	< 0.5		0.5	Pass	
Fluorene			mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg	< 0.5		0.5	Pass	
Naphthalene			mg/kg	< 0.5		0.5	Pass	
Phenanthrene			mg/kg	< 0.5		0.5	Pass	
Pyrene			mg/kg	< 0.5		0.5	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarl	oons							
Acenaphthene			%	85		70-130	Pass	
Acenaphthylene			%	86		70-130	Pass	
Anthracene			%	106		70-130	Pass	
Benz(a)anthracene			%	87		70-130	Pass	
Benzo(a)pyrene			%	105		70-130	Pass	
Benzo(b&j)fluoranthene			%	121		70-130	Pass	
Benzo(g.h.i)perylene			%	82		70-130	Pass	
Benzo(k)fluoranthene			%	101		70-130	Pass	
Chrysene			%	104		70-130	Pass	
Dibenz(a.h)anthracene			%	104		70-130	Pass	
Fluoranthene			%	94		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	73		70-130	Pass	
Phenanthrene			%	116		70-130	Pass	
Pyrene			%	94		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1 1			
Polycyclic Aromatic Hydrocarl	oons	1		Result 1				
Acenaphthene	M22-Ja05285	CP	%	100		70-130	Pass	
Acenaphthylene	M22-Ja05285	CP	%	99		70-130	Pass	
Anthracene	M22-Ja05285	CP	%	115		70-130	Pass	
Benz(a)anthracene	M22-Ja05285	CP	%	71		70-130	Pass	
Benzo(a)pyrene	M22-Ja05285	CP	%	87		70-130	Pass	
Benzo(b&j)fluoranthene	M22-Ja05285	CP	%	101		70-130	Pass	
Benzo(g.h.i)perylene	M22-Ja05285	CP	%	104		70-130	Pass	
Benzo(k)fluoranthene	M22-Ja05285	CP	%	120		70-130	Pass	
Chrysene	M22-Ja05285	CP	%	87		70-130	Pass	
Dibenz(a.h)anthracene	M22-Ja05285	CP	%	87		70-130	Pass	
Fluoranthene	M22-Ja05285	CP	%	108		70-130	Pass	
Fluorene	M22-Ja05285	CP	%	122		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	M22-Ja05285	CP	%	106			70-130	Pass	
Naphthalene	M22-Ja05285	CP	%	81			70-130	Pass	
Phenanthrene	M22-Ja05285	CP	%	91			70-130	Pass	
Pyrene	M22-Ja05285	CP	%	107			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	M22-Ja05295	CP	%	93			70-130	Pass	
Acenaphthylene	M22-Ja05295	CP	%	94			70-130	Pass	
Anthracene	M22-Ja05295	CP	%	107			70-130	Pass	
Benz(a)anthracene	M22-Ja05295	CP	%	98			70-130	Pass	
Benzo(a)pyrene	M22-Ja05295	CP	%	120			70-130	Pass	
Benzo(b&j)fluoranthene	M22-Ja05295	CP	%	95			70-130	Pass	
Benzo(g.h.i)perylene	M22-Ja05295	CP	%	101			70-130	Pass	
Benzo(k)fluoranthene	M22-Ja05295	CP	%	109			70-130	Pass	
Chrysene	M22-Ja05295	CP	%	79			70-130	Pass	
Dibenz(a.h)anthracene	M22-Ja05295	CP	%	83			70-130	Pass	
Fluoranthene	M22-Ja05295	CP	%	92			70-130	Pass	
Fluorene	M22-Ja05295	CP	%	115			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ja05295	CP	%	101			70-130	Pass	
Naphthalene	M22-Ja05295	CP	%	78			70-130	Pass	
Phenanthrene	M22-Ja05295	CP	%	87			70-130	Pass	
Pyrene	M22-Ja05295	CP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M22-Ja05279	CP	%	26	26	1.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ns	r		Result 1	Result 2	RPD			
Polycyclic Aromatic Hydrocarbo Acenaphthene	ns M22-Ja05284	СР	mg/kg	Result 1 < 0.5	Result 2 < 0.5	RPD <1	30%	Pass	
		CP CP	mg/kg mg/kg				30% 30%	Pass Pass	
Acenaphthene	M22-Ja05284	-	00	< 0.5	< 0.5	<1			
Acenaphthene Acenaphthylene	M22-Ja05284 M22-Ja05284	СР	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	
Acenaphthene Acenaphthylene Anthracene	M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30%	Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M22-Ja05284	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M22-Ja05284	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(g.h.i)perylene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Pyrene Duplicate	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	M22-Ja05284 M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate % Moisture Duplicate	M22-Ja05284	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbo	M22-Ja05284	CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate % Moisture Duplicate	M22-Ja05284	CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbo	M22-Ja05284	CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene	M22-Ja05284	СР СР СР СР СР СР СР СР СР СР	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluoranthene Fluoranthene Pluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Duplicate % Moisture Duplicate Acenaphthene Acenaphthene	M22-Ja05284	СР СР СР СР СР СР СР СР СР СР	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Benzo(b&j)fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M22-Ja05294	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

N/A
Yes
No

Qualifier Codes/Comments

Code

de Description

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Callum McEwan Joseph Edouard Analytical Services Manager Senior Analyst-Organic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Client: Kleinfelder Austral	ia Ptv Ltd	Site N	amo	Clasha			-		SITE, C	OC AN	D CONT										Laboratory:
Level 1, 95 Covent		_	ame: 'E NUMBER	Glenlyon							_	-	pler Name:	Matt Kin							Eurofins/mgt
South Melbou		Job No		20220348,00									act Number:	4677896		_				6 N	fonterey Road
VIC 3205		_	ed TAT:	20220348,00 24 hrs	_	8 hrs				1	\sim		oct e-mail:		deinfelder.com	_				Dar	ndenong South
Phone: 03 9907	6000	_	A level:	LAB minimum				days	50	ays	7 days		ame (if not sample mail:								VIC 3175
CHAIN OF CUSTODY									-	-	-	- IM E	-man;	Imcdonne	@kleinfelder.co	m			Phone: (0		4 5000 Fax: (03) 8564 5090
Relinquished by (print):			Rece	eived by (print):						Relinq	uished;				Received by:					Se	end Results to:
(sign)				(sign)						_	(sign)				(sign)				1	aval 1	95 Coventry Street
Date / Time:			Date / Time:						Date	/ Time:				Date / Tim	10:						elbourne, VIC 3205
Notes:			Temp. (°C)		-	ice pro	sent / n		Notes					Temp. (°C	C)						
			Notes:				sent / no		10100					Notes:		ice preser sents intar	nt / noice		me	bourne	e: 03 9907 6000
									-	_		Örga	nic Analytes		м	etals		Other A	nalytes	Flion	3. 03 9907 6000
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	АН	огр											Comments
SS27_1_0.0_0.1			Soil	16/12/2021				1	x	-					++		+			+	
SS27_1_0.4_0.5			Soil	16/12/2021				1		x						_				-	
SS27_2_0.0_0.1			Soil	16/12/2021				1	x			-							-		
SS27_2_0.4_0.5			Soll	16/12/2021				1		х				1						-	
SS27_3_0.0_0.1			Soil	16/12/2021				à	x												
SS27_3_0.4_0.5			Soll	16/12/2021				1		x										-	
SS27_4_0.0_0.1			Soil	16/12/2021				1	x			-					+				
SS27_4_0.4_0.5			Soil	16/12/2021				1		x								-		-	
SS27_5_0.0_0.1			Soil	16/12/2021				1	x												
S27_5_0.4_0.5			Soli	16/12/2021				1		x											
S27_6_0.0_0.1			Soil	16/12/2021				1	x								+	_			
S27_6_0.4_0.5			Soil	16/12/2021				1		x									-		
S15_1_0.0-0.1			Soil	16/12/2021				1	x												
\$15_1_0.3-0.4			Soil	16/12/2021				1		x											
S15_2_0.0-0.1			Soil	16/12/2021				t	x									-			
S15_2_0.3-0.4			Soil	16/12/2021				1		x											
S15_3_0.0-0.1			Soil	16/12/2021				1	x										1		
S15_3_0.3-0.4			Soll	16/12/2021				1		x							+ +				

Jultonah 854,503

CHAIN OF CUSTODY																								Se	nd Results to:
Relinquished by (print):			Recei	lved by (print):		_				Relind	quished:				_	R	Received by:								
(sign)		_		(sign)					-		(sign)				-		(sign)	_		_					95 Coventry Street
Date / Time:			Date / Time: Temp. (°C)						Date .	/ Time.	:					/ <i>Time:</i> b. (^c C)							So	outh M	elbourne, VIC 3205
Notes:			Notes:				sent / no		Notes	:					Note				esent /				mel	bourne	alab@kleinfelder.com
		_			E	seals in	tact / no	seal	+	_	_	Organi	c Analy	rtes			N	seal i etais	ntact / r	io seal	Oth	er Anal)	des	Phon	e: 03 9907 6000
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	PAH	ногр															Comments
SS15_4_0.0-0.1			Soil	16/12/2021				1	x																
SS15_4_0.3-0.4			Soil	16/12/2021				1		x															
SS15_5_0.0-0.1			Soll	16/12/2021				1	x																
SS15_5_0.3-0.4			Soll	16/12/2021				1		x															
SS15_6_0.0-0.1			Soil	16/12/2021				1	x																
SS15_6_0.3-0.4			Soil	16/12/2021				1		x															
SS29_1_0.0_0.1			Soil	16/12/2021				1	×																
SS29_1_0.4_0.5			Soll	16/12/2021				1		x															
\$\$29_2_0.0_0.1			Soil	16/12/2021				1	x																
SS29_2_0.4_0.5			Soil	16/12/2021				1		x															
SS29_3_0.0_0.1			Soil	16/12/2021				1	x						_										
SS29_3_0.4_0.5			Soil	16/12/2021				1		х															
SS29_4_0.0_0.1			Solf	16/12/2021				1	x																
SS29_4_0.4_0.5			Soil	16/12/2021				1		×															
SS29_5_0.0_0.1			Soil	16/12/2021				1	×						1										
SS29_5_0.4_0.5			Soil	16/12/2021				1		x															
SS29_6_0.0_0.1			Soil	16/12/2021				1	x																
SS29_6_0.4_0.5			Soil	16/12/2021				1		x															
SW03_0.0_0.1			Soll	16/12/2021				1	x	x															
S1			Clay Fragme	16/12/2021				1	x																
QC01			Soil	16/12/2021				1	x					_											
QC02			Soli	16/12/2021				1	x																PLEASE FORWARD TO AL
QC03			Soil	16/12/2021				1		x															

Sulforah 854 503

CHAIN OF CUSTODY									-									_					Sen	d Results to:
Relinquished by (print):			Rece	ived by (print):						Relinqu	vished:					F	Received by:							
(sign)				(sign)							(sign)						(sign)					Leve	el 1, 9	5 Coventry Street
Date / Time:			Date / Time:						Date	Time:					Date /	Time:						Sout	th Mel	Ibourne, VIC 3205
			Temp. (°C)												Temp.	(°C)								
Notes:			Notes:				sent / no tact / no		Notes						Notes;				esent / intact / r					ab@kleinfelder.com : 03 9907 6000
			1					_				Organ	c Analyte	66	4000		N	etal≍		Othe	or Analyte	* 5		
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	РАН	ногр														Comments
QC04			Soil	16/12/2021				1		x														PLEASE FORWARD TO ALS
QC05			Water	16/12/2021				3	×															
									1								-	-						

Sullouch 854503

CHAIN OF CUSTODY				1 4 1		_				Rolina	ulshed:			1	Received by:								Results to:
Relinquished by (print):			Receive	d by (print):	_				-	nonng	(sign)				(sign)						Loval	1 05	Coventry Street
(sign)				(sign)					-		13.9			Data		-							oume, VIC 3205
Date / Time:			ate / Time:		_				Date /	Time:	-				/ Time: . (°C)						••••		
Notes:			emp. (°C)			ce pres	ent/no	ice	Notes	:				Notes			resent /						billikleinfelder.com 03 9907 6000
		~	lotes:		s	eals int	act / no	seal	-	-		Organic /	nalvtes			seals _i Netais	intact / r	0 5681	Other	Analyte	_	ione.	03 9901 0000
Sample ID	Lab ID	Sample Point	Sample Type	Date	Start Depth	End Depth	Units	# Containers	PAH	HOLD						1							Comments
SS15_4_0.0-0.1		s	Soil	16/12/2021				1	x					_		_						_	
SS15_4_0.3-0.4		s	Soil	16/12/2021				1	-	x		_		_		-				_		+	
SS15_5_0.0-0.1		s	Soil	16/12/2021				1	x							-	_			_		-	
SS15_5_0.3-0.4		s	Soil	16/12/2021				1	-	x		_				-				_	_	-	
SS15_6_0.0-0.1		S	Soil	16/12/2021				1	X			_		_		-						_	
SS15_6_0.3-0.4		s	Soil	16/12/2021				1		×				_		-				-		-	
SS29_1_0.0_0.1		s	Soil	16/12/2021				1	X			_				-						-+	
SS29_1_0.4_0.5		5	Soli	16/12/2021				1		×		_				-	-			-		-	
SS29_2_0.0_0.1		s	Soil	16/12/2021		_		1	X	_						-	-					-	
SS29_2_0.4_0.5		5	Soil	16/12/2021				1	-	×			+ +	_		-				-		-	
SS29_3_0.0_0.1		8	Soil	16/12/2021				1	×	-		_	+ +	_								-	
SS29_3_0.4_0.5		5	Sail	16/12/2021		-		1	-	×	-						-			-		-	
SS29_4_0.0_0.1		5	Soll	16/12/2021				1	x					_		-	-					-	
SS29_4_0.4_0.5		5	Soil	16/12/2021			-	1	-	X	-	_				-						-	
SS29_5_0.0_0.1		5	Soil	16/12/2021			-	1	X	-	-			_			-					-	
SS29_5_0.4_0.5		2	Soil	16/12/2021				1		×						-	-		_	_		-	
SS29_6_0.0_0.1		1	Soil	16/12/2021		_		1	x	-	-		_			-	-				_	_	
SS29_6_0.4_0.5		1	Soil	16/12/2021				1	-	×			-		<u></u>	-	-			_			
SW03_0.0_0.1		1	Soll	16/12/2021				1	x	×			_				-			-			
S1			Clay Fragme	16/12/2021				1	X	-	-		-										
QC01		1	Soil	16/12/2021				1	X		-					-	-					_	
QC02			Soil	16/12/2021				1	×					_			-	-			-	_	PLEASE FORWARD TO AL
QC03			Soil	16/12/2021				1		X			_	_									

Sulforah 854,503

CHAIN OF CUSTODY			-	1 11				- 1	Re	linguishe	ed:				Re	ceived by:	· ·				
Relinquished by (print):		_	Rece	elved by (print): (sign)				-		(sig	-					(sign)					1, 95 Coventry Street
(sign)			Date / Time:		-		_	-	Date / T	ime:				Dat	e / Time:					South	Melbourne, VIC 3205
Date / Time:		_	Temp. (°C)		-									Ten	np. (°C)					melhour	nelab@kleinfelder.com
Notes:			Notes:			ce pres	ent / no ice act / no seal	- 1	Notes:					Not	95:		ice prei seals in	ent / no ice lact / no seal		Ph	one: 03 9907 6000
		1	Notes.	1	S	eals int	ACT / NO SHAT	-			0	rganic A	nalytes	-	- 1	Ň	etals		Other Analy	105	-
Sample ID	iLab ID	mple Point	mple Type	Date	art Depth	End Depth	Units # Containers		H	OLD											Comments
		ŝ	ő		- OT	m	5 #	<u>k</u>		x	-					1					PLEASE FORWARD TO
QC04		-	Soil	16/12/2021	-	-					-	-	++		-						
QC05			Water	16/12/2021			3	3	×					_	_		-			++-	
				-																	
		-	-										-	_	-		-				

Sullerah 854,503

RE: Esky Pickup

Jeremy McDonnell <JMcDonnell@Kleinfelder.com>

Tue 11/01/2022 12:02 PM

To: Callum McEwan <CallumMcEwan@eurofins.com>; #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com> Cc: Matt Kiraz <MKiraz@kleinfelder.com>; Harry Bacalis <HarryBacalis@eurofins.com>

EXTERNAL EMAIL*

Hi Callum,

Please find attached the COC including the requested analysis of the samples previously collected and currently on hold at the lab.

Regards,

Jeremy McDonnell, BSc, MEnvSus Project Manager

Level 1, 95 Coventry St South Melbourne, VIC 3205 o| + (61) 3 9907 6000 d| + (61) 3 9900 0036 m| + (61) 408 156 078

This email may contain confidential information. If you have received this email—including any attachments—in error, please notify the sender promptly and delete the email and any attachments from all of your systems.

From: Jeremy McDonnell
Sent: Tuesday, 4 January 2022 11:31 AM
To: #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com>; Callum McEwan
<CallumMcEwan@eurofins.com>; Matt Kiraz <MKiraz@kleinfelder.com>
Cc: Harry Bacalis <HarryBacalis@eurofins.com>
Subject: RE: Esky Pickup

Hi Callum,

Thanks for the call last week.

As discussed, we will send through the analytical request for the soil samples as soon as possible.

In the meantime, please continue to keep these samples on hold.

🔅 eurofins

Environment Testing **PROJECT INFORMATION**

Date Received:	17/12/21-5.29 pu
Company:	
Contact person:	
Contact Number:	
Contact E-mail:	
Project Name/site:	Glenlyon

Project	Number:	2eskies Ct
COC:	Attached E-mailed Not received	Chilled: temp: Correction: Final Temp: Correction: C

Last modified on: 16 October 2019	Approved on: 16 October 2019	Version: QS1039_R2
Last modified by: H. Le	Approver: M. Makarios	Page 1 of 1
Editorial Committee: T. Lakeland, F. Sar		Next required review date: 16 October 2022
Editorial Committee: 1. Lakeland, P. Sar	ijaya, II. Eo, III. Hondi 100	

Sultorah 854503

Kleinfelder Australia Pty Ltd (VIC) Level 1, 95 Coventry St South Melbourne VIC 3205

Attention:

Jeremy McDonnell

Report Project name Project ID Received Date 851670-W-V2 GLENLYON EMP 20223763.001A Dec 17, 2021

Client Sample ID			SW01_1	SW01_2	SW02	SW03
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M21-De46405	M21-De46406	M21-De46407	M21-De46408
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	ł					
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	88	86	86	109
p-Terphenyl-d14 (surr.)	1	%	118	110	120	106
Ammonia (as N)	0.01	mg/L	< 0.01	0.02	0.04	0.10
Chloride	1	mg/L	13	13	13	46
Nitrate & Nitrite (as N)	0.05	mg/L	0.23	0.23	0.24	< 0.05
Nitrate (as N)	0.02	mg/L	0.23	0.23	0.24	< 0.02
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Phosphate total (as P)	0.01	mg/L	0.01	0.01	0.01	0.13
Sulphate (as SO4)	5	mg/L	< 5	< 5	< 5	< 5
Total Dissolved Solids Dried at $180^{\circ}C \pm 2^{\circ}C$	10	mg/L	91	150	120	390
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.9	0.4	< 0.2	3.4
Total Nitrogen (as N)*	0.2	mg/L	1.13	0.63	0.24	3.4
Total Suspended Solids Dried at 103–105°C	5	mg/L	5.2	< 5	< 5	41
Alkalinity (speciated)	I					
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	50	47	51	320
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	13

NATA

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			SW01_1	SW01_2	SW02	SW03	
Sample Matrix			Water	Water	Water	Water	
Eurofins Sample No.			M21-De46405	M21-De46406	M21-De46407	M21-De46408	
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	
Test/Reference	LOR	Unit					
Alkali Metals							
Calcium	0.5	mg/L	3.8	3.8	3.8	25	
Magnesium	0.5	mg/L	4.6	4.7	4.6	26	
Potassium	0.5	mg/L	1.0	1.0	1.0	1.7	
Sodium	0.5	mg/L	12	12	12	77	
Heavy Metals							
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004	
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001	
Copper (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	0.005	
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.003	
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004	
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	0.006	

Client Sample ID			SW04	SW05	QC01	QC02
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M21-De46409	M21-De46410	M21-De46411	M21-De46412
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	83	81	90	70
p-Terphenyl-d14 (surr.)	1	%	65	77	77	56
Ammonia (as N)	0.01	mg/L	0.05	0.02	0.03	-
Chloride	1	mg/L	61	13	13	-
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	0.24	0.24	-
Nitrate (as N)	0.02	mg/L	< 0.02	0.24	0.23	-
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
Phosphate total (as P)	0.01	mg/L	0.01	0.01	0.03	-
Sulphate (as SO4)	5	mg/L	< 5	< 5	< 5	-
Total Dissolved Solids Dried at 180°C ± 2°C	10	mg/L	850	61	37	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	0.8	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference		Unit	SW04 Water M21-De46409 Dec 16, 2021	SW05 Water M21-De46410 Dec 16, 2021	QC01 Water M21-De46411 Dec 16, 2021	QC02 Water M21-De46412 Dec 16, 2021
Total Nitrogen (as N)*	0.2	mg/L	< 0.2	0.24	1.04	-
Total Suspended Solids Dried at 103–105°C Alkalinity (speciated)	5	mg/L	8.2	22	8.9	-
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	790	51	52	_
Carbonate Alkalinity (as CaCO3)	10	mg/L	55	< 10	< 10	-
Alkali Metals						
Calcium	0.5	mg/L	54	3.9	3.9	-
Magnesium	0.5	mg/L	78	4.8	4.9	-
Potassium	0.5	mg/L	2.6	1.1	1.0	-
Sodium	0.5	mg/L	150	12	13	-
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005

Client Sample ID Sample Matrix			RINSATE Water
Eurofins Sample No.			M21-De46413
Date Sampled			Dec 16, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	76
p-Terphenyl-d14 (surr.)	1	%	84

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Dec 21, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Suspended Solids Dried at 103–105°C	Melbourne	Dec 21, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Heavy Metals (filtered)	Melbourne	Jan 10, 2022	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P			
Ammonia (as N)	Melbourne	Dec 21, 2021	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	Dec 21, 2021	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Phosphate total (as P)	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Dec 21, 2021	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Major Anions			
Chloride	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Dec 21, 2021	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Dec 21, 2021	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Major Cations			
Alkali Metals	Melbourne	Jan 10, 2022	180 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon Phosphorus by ICP-AES			

web: ww email: E Cor Add	eurofins Environment Testing ABN: 50 005 085 521 Melbourne 6 Monterey Road pandenong South VIL Phone: +61 3 8564 5 NATA # 1261 Site # 1 mpany Name: Kleinfelder Australia Pty Ltd (VIC) Iress: Level 1, 95 Coventry St South Melbourne VIC 3205 ject Name: GLENLYON EMP ject ID: 20223763.001A					S U 175 1() La 4 P	ydney nit F3, E 6 Mars I ane Cov hone : + ATA # 1 ATA # 1 OI R(Building Road re West 61 2 99	F NSW 2 900 840 e # 182 No.: #:	Bi 1/ M 0066 Pł 0 N/ 17 8 0 0	urarrie hone : 4 ATA # 1 35167)3 99(allwood QLD 41 -61 7 39 1261 Sit	72 02 4600 e # 2079	4/ M 9 P 94 Pl	D Box 6 none : +	strial D East NS 0 Wick 61 2 49	SW 2304 ham 229 968 8448 te # 2507	- AE 46 W 3 Pr 3 Pr 9	aN: 91 05 0159 898 erth -48 Banksia Road elshpool WA 6106 ione: +61 8 6253 4444 ATA # 2377 Site # 2370 Received: Due: Priority: Contact Name:			
		Sa	mple Detail			Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Nickel (filtered)	Total Suspended Solids Dried at 103–105°C	Zinc (filtered)	Polycyclic Aromatic Hydrocarbons	Major Anions	Major Cations	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	Total Dissolved Solids Dried at 180°C ±	ns Analytical Serv	vices Manager : Mich		
												ဂိ						2°C				
		ory - NATA # 12		4		Х	X	Х	X	х	Х	X	Х	Х	Х	Х	X	Х				
-		- NATA # 1261 \$																				
		y - NATA # 1261																				
-		<u>- NATA # 1261</u> IATA # 2377 Sit															$\left \right $					
	nal Laboratory																					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	SW01 1	Dec 16, 2021	THIC	Water	M21-De46405	х	X	х	х	x	х	X	х	Х	Х	х	x	Х				
	SW01_2	Dec 16, 2021		Water	M21-De46406	Х	x	Х	х	х	Х	x	х	Х	х	Х	X	Х				
-	SW02	Dec 16, 2021		Water	M21-De46407	Х	Х	Х	х	х	Х	х	х	Х	х	Х	Х	Х				
4	SW03	Dec 16, 2021		Water	M21-De46408	Х	Х	Х	х	х	Х	Х	х	Х	Х	Х	Х	Х				
5	SW04	Dec 16, 2021		Water	M21-De46409	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х				
6	SW05	Dec 16, 2021		Water	M21-De46410	Х	х	х	х	х	х	х	х	Х	х	Х	х	Х				
	QC01	Dec 16, 2021		Water	M21-De46411	Х	х	Х	х	х	Х	X	х	Х	х	Х	Х	Х				
	QC02	Dec 16, 2021		Water	M21-De46412	Х	X	Х	Х	Х	Х		Х	Х								
9	RINSATE	Dec 16, 2021		Water	M21-De46413									Х								

web: www.eurofins.com.au email: EnviroSales@eurofins.com		Eurofins Environme ABN: 50 005 085 521			Austra	lia Pty										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	NZBN: 9429046024954	
		Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 16 1 La 1 Pl	Sydney Unit F3, Building F 5 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217			1/ M 2066 P 0 N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone :+61 7 3902 4600 NATA # 1261 Site # 20794			4, N) P 94 P	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079				Perth 16-48 Banksia Road Velshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Kleinfelder Australia Pty Ltd (VIC) Level 1, 95 Coventry St South Melbourne VIC 3205			R	rder N eport hone: ax:	#:	0	35167(03 990 03 990	07 600							Received: Due: Priority: Contact Name:	Dec 17, 2021 5:29 Jan 6, 2022 10 Day Jeremy McDonnel	
Project Name: Project ID:	GLENLYON EMP 20223763.001A													I	Euro	fins Analytical Ser	vices Manager : Mich	ael Cassidy
	Sample Detail		Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Nickel (filtered)	Total Suspended Solids Dried at 103–105°C	Zinc (filtered)	Polycyclic Aromatic Hydrocarbons	Major Anions	Major Cations	Eurofins Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	Total Dissolved Solids Dried at 180°C ± 2°C			
Melbourne Laboratory	y - NATA # 1261 Site # 1254		Х	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	Х			
Sydney Laboratory - I	NATA # 1261 Site # 18217							<u> </u>								1		
Brisbane Laboratory -	- NATA # 1261 Site # 20794							<u> </u>								1		
Mayfield Laboratory -	NATA # 1261 Site # 25079							\square										
Perth Laboratory - NA	ATA # 2377 Site # 2370							<u> </u>								1		
External Laboratory																1		
Test Counts			10	10	10	10	10	10	7	10	9	7	7	7	7			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

•••••			
mg/kg: milli	grams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts	per million	ppb: parts per billion	%: Percentage
org/100mL:	Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.4
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	A	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank						
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Chloride	mg/L	<1		1	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05		0.05	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Phosphate total (as P)	mg/L	< 0.02		0.02	Pass	
Sulphate (as SO4)	mg/L	< 5		5	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	mg/L	< 10		10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2		0.2	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 5		5	Pass	
Method Blank	IIIg/L			5	1 855	
Alkalinity (speciated)		L				
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Carbonate Alkalinity (as CaCO3)	ŭ	< 10		10	Pass	
Method Blank	mg/L	< 10		10	Fass	
Alkali Metals						
Calcium		< 0.5		0.5	Pass	
	mg/L					
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
Method Blank		L				
Heavy Metals		0.004		0.004	Dese	
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	94		70-130	Pass	
Acenaphthylene	%	78		70-130	Pass	

Test			Units	Result 1	/	Acceptance Limits	Pass Limits	Qualifying Code
Anthracene			%	77		70-130	Pass	
Benz(a)anthracene			%	87		70-130	Pass	
Benzo(a)pyrene			%	80		70-130	Pass	
Benzo(b&j)fluoranthene			%	95		70-130	Pass	
Benzo(g.h.i)perylene			%	103		70-130	Pass	
Benzo(k)fluoranthene			%	84		70-130	Pass	
Chrysene			%	107		70-130	Pass	
Dibenz(a.h)anthracene			%	89		70-130	Pass	
Fluoranthene			%	83		70-130	Pass	
Fluorene			%	92		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	103		70-130	Pass	
Naphthalene			%	94		70-130	Pass	
Phenanthrene			%	95		70-130	Pass	
Pyrene			%	109		70-130	Pass	
LCS - % Recovery				1	1 1 1		r	
Ammonia (as N)			%	109		70-130	Pass	
Chloride			%	107		70-130	Pass	
Nitrate & Nitrite (as N)			%	100		70-130	Pass	
Nitrate (as N)			%	100		70-130	Pass	
Nitrite (as N)			%	105		70-130	Pass	
Phosphate total (as P)			%	100		70-130	Pass	
Sulphate (as SO4)			%	82		70-130	Pass	
Total Dissolved Solids Dried at 180°	C ± 2°C		%	100		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	123		70-130	Pass	
Total Suspended Solids Dried at 103	3–105°C		%	89		70-130	Pass	
LCS - % Recovery								
Alkalinity (speciated)								
Carbonate Alkalinity (as CaCO3)			%	116		70-130	Pass	
LCS - % Recovery							-	
Alkali Metals								
Calcium			%	111		80-120	Pass	
Magnesium			%	107		80-120	Pass	
Potassium			%	103		80-120	Pass	
Sodium			%	96		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	S21-De25094	NCP	%	91		70-130	Pass	
Acenaphthylene	S21-De25094	NCP	%	99		70-130	Pass	
Anthracene	S21-De25094	NCP	%	84		70-130	Pass	
Benz(a)anthracene	S21-De25094	NCP	%	107		70-130	Pass	
Benzo(a)pyrene	S21-De25094	NCP	%	113		70-130	Pass	
Benzo(b&j)fluoranthene	S21-De25094	NCP	%	124		70-130	Pass	
Benzo(g.h.i)perylene	S21-De25094	NCP	%	80		70-130	Pass	
Benzo(k)fluoranthene	S21-De25094	NCP	%	110		70-130	Pass	
Chrysene	S21-De25094	NCP	%	107		70-130	Pass	
Dibenz(a.h)anthracene	S21-De25094	NCP	%	88		70-130	Pass	
Fluoranthene	S21-De25094	NCP	%	111		70-130	Pass	
Fluorene	S21-De25094	NCP	%	95		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-De25094	NCP	%	94		70-130	Pass	
		-			1 1		Pass	
Naphthalene	S21-De25094	NCP	%	110		70-130	1 033	
Naphthalene	S21-De25094 S21-De25094	NCP NCP	%					
· /· ·	S21-De25094 S21-De25094 S21-De25094	NCP NCP NCP	% % %	110 116 122		70-130 70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
				Result 1					
Ammonia (as N)	M21-De46405	CP	%	110			70-130	Pass	
Nitrate & Nitrite (as N)	M21-De46405	CP	%	99			70-130	Pass	
Nitrate (as N)	M21-De46405	CP	%	99			70-130	Pass	
Nitrite (as N)	M21-De46405	CP	%	106			70-130	Pass	
Phosphate total (as P)	M21-De46405	CP	%	92			70-130	Pass	
Sulphate (as SO4)	M21-De38259	NCP	%	95			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	S21-De44431	NCP	%	128			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	S21-De48766	NCP	%	104			75-125	Pass	
Magnesium	S21-De48766	NCP	%	99			75-125	Pass	
Potassium	S21-De48766	NCP	%	103			75-125	Pass	
Sodium	M21-De46405	CP	%	88			75-125	Pass	
Spike - % Recovery								•	
•				Result 1					
Total Suspended Solids Dried at									
103–105°C	M21-De46411	CP	%	92			70-130	Pass	
Spike - % Recovery							1	1	
Alkali Metals	1	1		Result 1					
Sodium	M21-De46412	CP	%	81			75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance Limits	Pass	Qualifying
Dunlianto		Source					Limits	Limits	Code
Duplicate	-			Desult 1	Desult 0	000			
Polycyclic Aromatic Hydrocarbon		NOD		Result 1	Result 2	RPD	0.001	Deer	
Acenaphthene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M21-De45492	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate								1	
	I			Result 1	Result 2	RPD			
Ammonia (as N)	M21-De45496	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chloride	M21-De46405	CP	mg/L	13	13	2.0	30%	Pass	
Nitrate & Nitrite (as N)	M21-De46405	CP	mg/L	0.23	0.23	1.0	30%	Pass	
Nitrate (as N)	M21-De46405	CP	mg/L	0.23	0.22	2.0	30%	Pass	
Nitrite (as N)	M21-De46405	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	N21-De38854	NCP	mg/L	0.07	0.07	1.0	30%	Pass	
Sulphate (as SO4)	M21-De46405	CP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate					1 1		1		
Alkalinity (speciated)	1			Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M21-De39001	NCP	mg/L	< 20	< 20	<1	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M21-De39001	NCP	mg/L	< 10	< 10	<1	30%	Pass	

Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S21-De48766	NCP	mg/L	25	26	5.0	30%	Pass	
Magnesium	S21-De48766	NCP	mg/L	14	15	5.0	30%	Pass	
Potassium	S21-De48766	NCP	mg/L	130	140	6.0	30%	Pass	
Duplicate									
	_			Result 1	Result 2	RPD			
Total Suspended Solids Dried at 103–105°C	M21-De46406	СР	mg/L	< 5	< 5	<1	30%	Pass	

Comments

This report has been revised (V2) following repeat analysis. Test (Metals) results for sample (SW03 (De46408)) have now been replaced by the repeat results.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Michael Cassidy Emily Rosenberg Joseph Edouard Scott Beddoes

Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Minimidial Australia Pluzi Pluzi Australia Pluzi Pluzi Australia Pluzi Pluzi Australi Pluzi Pluzi Australia Pluzi Pluzi Australia Pluzi	Client:		1	_		-		_	5	ITE C	OC AN	ID CON	TACT	DATA												aboratory:
Lay 1, 95 Coventry Street Low 1, 95 Coventry Street South Member / Prove (0) 3065 South Member / Prove (0) 3067 South / Prove (0) 3067 South / Prove (0)	Kleinfelder Austr	alia Pty Ltd	Site Na	ime:	Glenlyon EM	P							1			Mat	t Kiraz			_					Ē	urofins mgt
V1C 3305 Prone: Display=0.000, 000, 000, 000, 000, 000, 000, 00	Level 1, 95 Cove	ntry Street	QUOTE	ENUMBER									-			_									6 M	onterey Road
Phone: Johne: Johne:<			Job No	u:	20223763.00	1A						0	Con	tact e-n	nail:	mkin	az@k eir	nfelder.com				1			Dan	denong South
Lebel DC USTOY Date Interventional quark Relative Up of Custom Preconserved by (entry) Preconserved by (entry) Semidle Up of Custom Sem			Require	ed TAT:	24 hrs	48	3 hrs	3	days	50	days	(7 days	PMI	name (i	if not sample	_										
CHAM CHAM <th< td=""><td></td><td>07 6000</td><td>Data Q</td><td>A level:</td><td>LAB minimum</td><td>n unles</td><td>s speci</td><td>fied:</td><td></td><td>_</td><td></td><td>C</td><td>PM</td><td>e-mail:</td><td></td><td>imcd</td><td>onnell</td><td>kteinfelder.</td><td>om</td><td></td><td></td><td>1</td><td>Ph</td><td>one: (03</td><td>3) 8564</td><td>5000 Fax: (03) 8564 5090</td></th<>		07 6000	Data Q	A level:	LAB minimum	n unles	s speci	fied:		_		C	PM	e-mail:		imcd	onnell	kteinfelder.	om			1	Ph	one: (03	3) 8564	5000 Fax: (03) 8564 5090
(400) (401) <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>_</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						1		_		-																
Image: Note: Date / Time: Date / Time:<				Reci							Relin		_	_			1									
Impute frame Open / Trme:	(sign))			(sign)							(sign)						(sign						Le	vel 1	95 Coventry Street
	Date / Time:			Date / Time:						Date	/ Time					Data	/ Time:									
Index: Note: Issue present/ no ica websitati / no ica setti materi / no ic				Temp. (⁶ C)									-			-										
Semple ID Lab ID Test Instant / no seal Test Instant / no seal Test Instant / no seal Other Analytes Other Analytes Semple ID Lab ID Test Instant / no seal Other Analytes Other Analytes Semple ID Lab ID Test Instant / no seal Other Analytes Comments Semple ID Lab ID Test Instant / no seal Other Analytes Semple ID Lab ID Test Instant / no seal Comments Semple ID Lab ID Test Instant / no seal Comments SW01_1 Lab ID Iso Instant / no seal Iso Instant / no seal Iso Instant / no seal Test Ins	Notes:			Notes:						Notes	5.'													mel	bourne	ab@kleinfelder.com
Semple ID Lab ID p							seals in	itact / no	seal	-						11010	•			intact /	no seal				Phone	: 03 9907 6000
Semple D Leb ID verto of of </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>_</td> <td>Orga</td> <td>anic Ar</td> <td>nalytes</td> <td>-</td> <td>-</td> <td>-</td> <td>Metals</td> <td></td> <td>-</td> <td>Oth</td> <td>er Analy</td> <td>yles</td> <td>-</td> <td></td>							I			-	-	_	Orga	anic Ar	nalytes	-	-	-	Metals		-	Oth	er Analy	yles	-	
Semple D Leb ID verto of of </th <th></th> <th>ę,</th> <th></th>														ę,												
Semple D Leb ID verto of of </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>đ</td> <td></td>										1				đ												
with and	Sample iD	Lab ID			Date	1					1			ວັ												Comments
SW01_1 I <tdi< td=""> I <tdi< td=""> I</tdi<></tdi<>			털	8					50	1		ous		Ś												
SW01_1 I <tdi< td=""> I <tdi< td=""> I</tdi<></tdi<>			8	Ē		pt	뒆		lhei	1	50	Ani	SS	As,												
SW01_1 I <tdi< td=""> I <tdi< td=""> I</tdi<></tdi<>			l a	apte 1		1 Å	l e	g	pute		Ferr	s a	8 I	्र ह	·											
SW01_1 I 16/12/2021 I 4 x			Sar	Sar		Sta	E E	Ē	Ü #	PAH	Aut.	Cati	Sa	Met: Ni, 2											1 0	
Image: Second	SW01_1				16/12/2021				4	x	x	x	x													
SW03 18/12/2021 4 X	SW01_2				16/12/2021				4	x	x	x	×	x												
SW05 16/12/2021 4 X	SW02				16/12/2021				4	x	x	х	x	x												
SW06 18/12/2021 4 X X X X X X QC01 16/12/2021 4 X X X X X X X QC02 18/12/2021 4 X X X X X X X QC02 18/12/2021 4 X X X X X X X	SW03				16/12/2021				4	x	x	x	x	x												
ACO1 16/12/2021 4 X X X X X ACO2 16/12/2021 4 X X X X X	SW05		_		16/12/2021				4	x	x	x	x	х												
ACCO2 16/12/2021 4 X X I	SW06				16/12/2021				4	x	x	x	x	x												
Rinsate 16/12/2021 x	QC01				16/12/2021				4	x	×	x	x	x												
Rinsate 16/12/2021 3 X Image: Constraint of the	QC02				16/12/2021				4	x				x												
	Rinsate				16/12/2021				3	x																

L 851670

RE: Esky Pickup

Harry Bacalis <HarryBacalis@eurofins.com> Fri 17/12/2021 11:45 AM To: Matt Kiraz <MKiraz@kleinfelder.com> Cc: Jeremy McDonnell <JMcDonnell@Kleinfelder.com>; #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com> Thanks Matt

Canh - Incoming Samples, COC attached

Kind regards,

Harry Bacalis Phone: +61 3 8564 5064 Mobile: +61 438 858 924 Email : <u>HarryBacalis@eurofins.com</u>

From: Matt Kiraz <MKiraz@kleinfelder.com> Sent: Friday, 17 December 2021 10:48 AM To: Harry Bacalis <HarryBacalis@eurofins.com> Cc: Jeremy McDonnell <JMcDonnell@Kleinfelder.com> Subject: RE: Esky Pickup

EXTERNAL EMAIL*

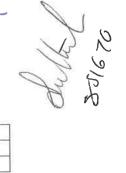
Thanks for that Harry.

Please find attached COCs for the samples arriving today. All soils are on HOLD, we will be able to send you an updated COC with analysis for these next week.

Kind regards,

Matt Kiraz Environmental Scientist

Level 1, 95 Coventry St South Melbourne, VIC 3205 o| + (61) 3 9907 6000 m| + (61) 467 789 650


What and a

This email may contain confidential information. If you have received this email—including any attachments—in error, please notify the sender promptly and delete the email and any attachments from all of your systems.

Environment Testing **PROJECT INFORMATION**

Date Received:	17/12/21-5.29pu
Company:	
Contact person:	
Contact Number:	
Contact E-mail:	
Project Name/site:	Glenlyon
Project Number:	2eskies
COC: Attached E-mailed Not receiv	ct Chilled: Chilled: Temp: Correction: Final Temp: Correction:

Last modified on: 16 October 2019	Approved on: 16 October 2019	Version: QS1039_R2
Last modified by: H. Le	Approver: M. Makarios	Page 1 of 1
Editorial Committee: T. Lakeland, F. Sanja	ya, H. Le, M. Makarios	Next required review date: 16 October 2022

RE: Eurofins Test Results, Invoice - Report 851670 : Site GLENLYON EMP (20223763.001A)

Matt Kiraz <MKiraz@kleinfelder.com> Tue 4/01/2022 11:31 AM To: #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com> Cc: Jeremy McDonnell <JMcDonnell@Kleinfelder.com>

EXTERNAL EMAIL*

To whom it may concern,

I made a mistake with the first COC. The QC02 was meant to go to ALS for secondary analysis. Could you please forward the samples with the COC attached to them as soon as possible.

Kind regards,

Matt Kiraz

De46412-6755625-30/GT956-N

Environmental Scientist

Level 1, 95 Coventry St South Melbourne, VIC 3205 o| + (61) 3 9907 6000 m| + (61) 467 789 650

This email may contain confidential information. If you have received this email—including any attachments—in error, please notify the sender promptly and delete the email and any attachments from all of your systems.

From: HarryBacalis@eurofins.com <HarryBacalis@eurofins.com> Sent: Wednesday, 29 December 2021 5:23 PM To: Jeremy McDonnell <JMcDonnell@Kleinfelder.com> Cc: Melbournelab <MelbourneLab@kleinfelder.com>; Matt Kiraz <MKiraz@kleinfelder.com> Subject: Eurofins Test Results, Invoice - Report 851670 : Site GLENLYON EMP (20223763.001A)

External Email

Please find attached results and invoice for your project in the subject header.

Kind regards,

Harry Bacalis

KLEINFELDER AUSTRALIA PTY LTD

Page 1 of 1

COC number:

Client: Kleinfelder Austra	fia Ptv Ltd	-			_				SITE,	COC /	AND CO	INTA	CT DATA		_									
Level 1, 95 Coven	try Street	Site N		Gleniyon Ek	V/P							_	ampini Nama:		Matt Kiraz				-			Laboratory:		
South Melbo			E NUMBER									_	ontect Number		467789650							Eurofins(mgt		
VIC 3205		Jab No		20223763.0				-		_			ontect - meil:	t e-meil: mkiner@kteinfelder.com					6 Monterey Road Dandenong South					
Phone: 03 9907	7 6000		ned TAT: DA level:	24 hrs		18 hrs	3 d	iya		5dayn	(7 da	n)v	W name (if not a	in mploy!	Jeremy Mo	Donnell		_			00	VIC 3175		
CHAIN OF CUSTODY		Loada G	A IBADI	LAB minimu	im unle	88.8040	fied:	_	_		~	P	A e-mail:		modonneitri		erin .			Phone: ((03) 856	4 5000 Fax: (03) 8564	5000	
Relinquished by (print):			Rec	elved by (print)	1:	-			T	Reli	nquishe	d:									S	and Results to:	0000	
(sign)			-	(sign	1				-		(sig			_		Received by							0	
ale / Time:			Date / Time;		-				-			~				(sign)					Level 1	, 95 Coventry Street	10	
			Tamp CCI		-	-			Deh	e / Time	o:	1			Date / Time:				1			felbourne, VIC 3205	14	
oles:			Notes;		+	ice pre	sent / no l	58	Note	9S.					Tomp: ("C)									
		-			1	seals h	ntact / no s	ea!	1					- 1	Notos:			tact / no seal		m	elbourn	elab@kleinfelder.com	G	
1												Qn	ganio Analyte:			M	etais	aut no sea	Othe	r Analytes	Phor	ie: 03 9907 6000		
							1.1						2		1				i		-	-		
Semple (D	Lab (D	Sample Point	Sample Type	Date	Start Dopth	End Depth	Units	# Containers	AH	utriente	ations/Arriens	D8 & T33	10 S		3				÷			Commant	la:	
N01_1				16/12/2021	60		3	4	X	12	- u		- Chi					_						
N01_2		1		16/12/2021	-				-	-	-	1	×	-	_									
V02		1		16/12/2021	-	-		4	X	-	X	-	X.				_							
V03				18/12/2021				4	X	X	X	X	1 11											
V05				16/12/2021				4	X	X	X	×						_						
V06				16/12/2021			-	4	X X	x	x	X	+ + + + + + + + + + + + + + + + + + + +					_	_					
201				16/12/2021				4	x	x	x	x	x											
:02				16/12/2021				4	x	^	^	^	x	-			_							
isate				16/12/2021		-	1	4	x			-	^ 									·		
								3			-		+ + +	-			-							
													+ + - +	-+-										
							-	+				-					_	_						
								_	_			_				-								
													4						1		-			
								-		-				-										
1		-+						-	_			_		_										
																		1	-	_				
								-+		-		-								_			-	
		-			-+				_	_												_		
								- 1	1								_				-			

Julluh 851670

APPENDIX C1: NEPM HIL C CALCULATION SPREADSHEET (365 DAYS/YEAR)

Derivation of Investigation Levels HIL C - Recreational

Summary of Exposure Parame	eters	Abbreviation	units	Parameter	References/Notes
Soil and Dust Ingestion Rate	- Young children (0-5 years)	IR _{SC}	mg/day	50	50% of HIL A assumption, Schedule B7, Table 5
Soli and Dust ingestion Rate	- Adults	IR _{SA}	mg/day	25	50% of HIL A assumption, Schedule B7, Table 5
Surface Area of Skin	- Young children (0-5 years)	SA _C	cm²/day	2700	As per enHealth (2012)
Surface Area of Skin	- Adults	SAA	cm²/day	6300	As per enHealth (2012) for male and female combined
Soil-to-Skin Adherence Factor		AF	mg/cm ² /day	0.5	Schedule B7, Table 5
Time Spent Outdoors		ETo	hours	2	Schedule B7, Table 5
Time Spent Indoors		ETi	hours	0	Schedule B7, Table 5
Lung Retention Factor		RF	-	0.375	Schedule B7, Table 5
Particulate Emission Factor		PEFo	(m ³ /kg)	2.6E+07	As per Equation 21 based assumptions presented in Schedule B7
Outdoor Air-to-Soil Gas Attenuat	ion Factor	α	-	0.05	Value adopted as discussed in Section 5.5 of Schedule B7
Pady weight	- Young children (0-5 years)	BW _C	kg	15	Schedule B7, Table 5
Body weight	- Adults	BW _A	kg	70	Schedule B7, Table 5
Exposure Frequency		EF	days/year	365	Schedule B7, Table 5
Exposure Duration	- Young children (0-5 years)	ED _C	years	6	Schedule B7, Table 5
	- Adults	ED _A	years	29	Schedule B7, Table 5
Averaging Time (non-carcinogenic)		AT _T	days	ED*365	Calculated based on ED for each relevant age group, multiplied by 24 hours for the assessment of inhalation exposures
Averaging Time (carcinogenic)		AT _{NT}	days	25550	Based on lifetime of 70 years, multiplied by 24 hours for the assessment of inhalation exposures

Threshold Calculations - Young Ch	ild Aged 2-3 years	5															
	Toxicity	GI	Toxicity	Oral	Dermal	Background	Toxicity	Background		Pathwa	ay Specifi	c HILs	Soil	Derived Interim	Derived Soil HIL	Derived Soil HIL (to 1	Notes
Compound	Reference Value	Absorption	Reference	Bioavailability	Absorption	Intake	Reference	Intake			(mg/kg)		Vapour	Soil Gas HIL -	(not rounded)	or 2 s.f.) (mg/kg)	
	Oral (TRV _o)	(GAF)	Value Dermal	BA ₀ (%)	Factor (DAF)	Oral/Dermal	Value	Inhalation		Soil	Dermal	Dust	HIL	Threshold (to 1 or 2	(mg/kg) (eqn 2 for		
	(mg/kg/day)	(unitless)	(TRV _D)		(unitless)	(BI ₀) (% of TDI)	Inhalation	(BIi) (% of	Ir	ngestion	(eqn 6)	(eqn 9)	(mg/m^3)	s.f.) (mg/m3)	relevant pathways)		
			(mg/kg/day)				(TRV _I) (mg/m ³)	TC)		(eqn 3)			(eqn 12)				
arsenic	0.002	1	0.002	100%	0.005	50%	0.001	0%		3.0E+02		8.2E+05			264	300	
beryllium	0.002	0.007	0.000014	100%	0.001	30%	0.000020	0%		1.2E+02		1.6E+04			86	90	
boron	0.2			100%		65%	0.7	65%		2.1E+04	NA	2.0E+08			20998	20000	
cadmium	0.0008			100%		60%	0.000005	20%		9.6E+01	NA	3.3E+03			93	90	
chromium (VI)	0.001			100%		10%	0.0001	0%		2.7E+02	NA	8.2E+04			269	300	
cobalt	0.001	1	0.0014	100%	0.001	20%	0.0001	0%		3.4E+02		8.2E+04			326	300	
copper	0.14			100%		60%	0.49	60%		L.7E+04	NA	1.6E+08			16798	17000	
manganese	0.16			100%		50%	0.00015	20%		2.4E+04	NA	9.8E+04			19296	19000	
methyl mercury	0.00023	1	0.00023	100%	0.001	80%	0.000805	80%		L.4E+01	5.1E+02	1.3E+05			13	13	L
mercury (inorganic)	0.0006	0.07	0.000042	100%	0.001	40%	0.0002	10%		L.1E+02		1.5E+05			78	80	
nickel	0.012	1	0.012	100%	0.005	60%	0.00002	20%		L.4E+03		1.3E+04			1157	1200	
selenium	0.006			100%		60%	0.021	60%		7.2E+02	NA	6.9E+06			720	700	<u> </u>
zinc	0.5	1	0.5	100%	0.001	80%	1.75	80%		3.0E+04		2.9E+08			29208	30000	
cyanide (free) (no VI)	0.006	1	0.006	100%	0.1	50%	0.0008	0%	9	9.0E+02		6.6E+05			243	240	L
TCE							0.002	10%		NA	NA	NA	4.3E-01	0.4			L
1,1,1-TCA							5	0%		NA	NA	NA	1.2E+03	1200			L
PCE							0.2	10%		NA	NA	NA	4.3E+01	40			L
cis-1,2-dichloroethene				1000/		2007	0.007	0%		NA	NA	NA	1.7E+00	2	20051	10000	L
phenol	0.7	1	0.7	100%	0.1	30%	0.035	30%		L.5E+05		2.0E+07			39651	40000	┣───
pentachlorophenol	0.003	1	0.003	100%	0.24	0%	0.0105	0%		0.0E+02		8.6E+06			120	120	┣───
cresols	0.1	1	0.1	100%	0.1	50%	0.35	50%		L.5E+04		1.4E+08			4054	4000	┣───
DDX	0.002	1	0.002	100%	0.018	0%	0.007	0%		5.0E+02		5.7E+06			404	400	<u> </u>
aldrin and dieldrin	0.0001	1	0.0001	100%	0.1	10%	0.00035	10%		2.7E+01		2.6E+05			7.3	10	<u> </u>
chlordane	0.0005	1	0.0005	100%	0.04	0% 30%	0.00175	0% 30%		L.5E+02		1.4E+06 1.2E+07			72	70 340	<u> </u>
endosulfan endrin	0.006	1	0.006	100% 100%	0.1	30%	0.021	0%		L.3E+03 5.0E+01		5.7E+05			341 16	<u>340</u> 20	<u> </u>
	0.0002	1	0.0002				0.0007			3.0E+01 3.0E+01		2.9E+05			8.1	10	<u> </u>
heptachlor HCB	0.0001	1	0.0001	100% 100%	0.1	0% 0%	0.00035	0%		4.8E+01		4.6E+05			13	10	<u> </u>
methoxychlor	0.005	1	0.00018	100%	0.1	0%	0.0175	0%		1.5E+01		1.4E+07			405	400	<u> </u>
mirex	0.0002	1	0.0002	100%	0.1	0%	0.0007	0%		5.0E+03		5.7E+05			16	20	I
toxaphene	0.00035	1	0.0002	100%	0.1	10%	0.001225	10%				9.0E+05			26	30	L
2,4,5-T	0.00035	1	0.00	100%	0.1	0%	0.035	0%		3.0E+01		2.9E+03			811	800	I
2,4-D	0.01	1	0.01	100%	0.05	0%	0.035	0%				2.9E+07			1277	1300	
MCPA	0.01	1	0.01	100%	0.03	0%	0.035	0%		3.0E+03		2.9E+07			811	800	
МСРА	0.01	1	0.01	100%	0.1	0%	0.035	0%		3.0E+03		2.9E+07			811	800	
mecoprop	0.01	1	0.01	100%	0.1	0%	0.035	0%	-	3.0E+03		2.9E+07			811	800	
picloram	0.01	1	0.01	100%	0.1	0%	0.245	0%				2.9L+07 2.0E+08			5676	5700	<u> </u>
atrazine	0.005	1	0.005	100%	0.1	0%	0.0175	0%		L.5E+03		1.4E+07			405	400	<u> </u>
chlorpyrifos	0.003	1	0.003	100%	0.03	50%	0.0175	50%		1.5E+03		4.3E+06			249	250	<u> </u>
bifenthrin	0.003	1	0.003	100%	0.03	10%	0.035	10%		2.7E+02		2.6E+07			730	730	
PCBs	0.00002	1	0.0002	100%	0.14	0%	0.00007	0%				5.7E+04			1.3	1	<u> </u>
PBDE Flame Retardants (Br1-Br9)	0.0001	1	0.0001	100%	0.14	80%	0.00035	80%				5.7E+04			1.5	2	<u> </u>

NA	Pathway n	ot of significance	e for chemica	assessed (refer to A

Non-Threshold Effects - Lifetime Exp	on-Threshold Effects - Lifetime Exposures [young child and adult]															
	Toxicity	GI	Non-Threshold	Oral	Dermal	Toxicity		Target	Pathwa	ay Specific	HILS	Soil	Derived Interim	Derived Soil HIL	Derived Soil HIL (to 1	Notes
Compound R	Reference Value	Absorption	Slope Factor	Bioavailability	Absorption	Reference		Risk		(mg/kg)		Vapour	Soil Gas IL -	(not rounded)	or 2 s.f.) (mg/kg)	
	Oral (TRV _o)	(GAF)	Dermal (SFd)	BA ₀ (%)	Factor (DAF)	Value		(TR)	Soil	Dermal	Dust	HIL	Threshold (to 1 or 2	(mg/kg) (eqn 2 for		
	(mg/kg/day) ⁻¹	(unitless)	(mg/kg/day) ⁻¹		(unitless)	Inhalation			Ingestion		(eqns 10	(mg/m^3)	s.f.) (mg/m3)	relevant pathways)		
						(TRV _I) (mg/m ³)			(eqns 4 and	and 8)	and 11)	(eqns 13				
						1			5)			and 14)				
TCE						0.004		1E-05	NA	NA	NA	1.2E+00	1			
vinyl chloride						0.0088		1E-05	NA	NA	NA	5.5E-01	0.5			
benzo(a)pyrene	0.5	1	0.5	14%	0.013	1.43E-01		1E-05	3.3E+02	5.8E+01	1.1E+05			49.6	50	1
benzo(a)pyrene (Early-Life)	0.5	1	0.5	14%	0.013	1.43E-01		1E-05	8.1E+01	2.1E+01	4.3E+04			16.8	20	1

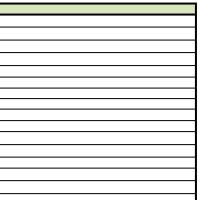
NA Pathway not of significance for chemical assessed (refer to Appendix A for chemical-specific details)
 1 Refer to Appendix A for discussion on different calculations conducted for benzo(a)pyrene and basis for HIL adopted

Appendix A for chemical-specific details)

APPENDIX C2: NEPM HIL C CALCULATION SPREADSHEET (104 DAYS/YEAR)

J

Derivation of Investigation Levels HIL C - Recreational


Summary of Exposure Parameter	ers	Abbreviation	units	Parameter	References/Notes
Soil and Dust Ingestion Rate	- Young children (0-5 years)	IR _{SC}	mg/day	50	50% of HIL A assumption, Schedule B7, Table 5
Son and Dust Ingestion Rate	- Adults	IR _{SA}	mg/day	25	50% of HIL A assumption, Schedule B7, Table 5
Surface Area of Skin	- Young children (0-5 years)	SA _C	cm²/day	2700	As per enHealth (2012)
Surface Area of Skill	- Adults	SAA	cm²/day	6300	As per enHealth (2012) for male and female combined
Soil-to-Skin Adherence Factor		AF	mg/cm ² /day	0.5	Schedule B7, Table 5
Time Spent Outdoors		ETo	hours	2	Schedule B7, Table 5
Time Spent Indoors		ETi	hours	0	Schedule B7, Table 5
Lung Retention Factor		RF	-	0.375	Schedule B7, Table 5
Particulate Emission Factor		PEFo	(m ³ /kg)	2.6E+07	As per Equation 21 based assumptions presented in Schedule B7
Outdoor Air-to-Soil Gas Attenuation	n Factor	α	-	0.05	Value adopted as discussed in Section 5.5 of Schedule B7
Body weight	- Young children (0-5 years)	BW _C	kg	15	Schedule B7, Table 5
body weight	- Adults	BW _A	kg	70	Schedule B7, Table 5
Exposure Frequency		EF	days/year	104	Schedule B7, Table 5
Exposure Duration	- Young children (0-5 years)	ED _C	years	6	Schedule B7, Table 5
Exposure Duration	- Adults	ED _A	years	29	Schedule B7, Table 5
Averaging Time (non-carcinogenic)		ATT	days	ED*365	Calculated based on ED for each relevant age group, multiplied by 24 hours for the assessment of inhalation exposures
Averaging Time (carcinogenic)		AT _{NT}	days	25550	Based on lifetime of 70 years, multiplied by 24 hours for the assessment of inhalation exposures

Threshold Calculations - Young	Child Aged 2-3 yea	rs															
Compound	Toxicity Reference Value	GI Absorption	Toxicity Reference	Oral Bioavailability	Factor (DAF)	Background Intake	Toxicity Reference Value Inhalation (TRV _I) (mg/m ³)	Background Intake			ay Specif (mg/kg)		Soil Vapour	Derived Interim Soil Gas HIL -	Derived Soil HIL (not rounded)	Derived Soil HIL (to 1 or 2 s.f.) (mg/kg)	Notes
compound	Oral (TRV_o) (mg/kg/day)	(GAF) (unitless)	Value Dermal (TRV _D) (mg/kg/day)	BA ₀ (%)		Oral/Dermal (BI ₀) (% of TDI)		Inhalation (BIi) (% of TC)	Ing	Soil gestion eqn 3)	Derma	l Dust	HIL (mg/m ³) (eqn 12)	Threshold (to 1 or 2 s.f.) (mg/m3)	(mg/kg) (eqn 2 for relevant pathways)		
arsenic	0.002	1	0.002	100%	0.005	50%	0.001	0%	1.1	1E+03	7.8E+0	3 2.9E+06	1		927	900	
bervllium	0.002	0.007	0.000014	100%	0.001	30%	0.000020	0%				2 5.8E+04			302	300	
boron	0.2	0.007	0.000021	100%	0.001	65%	0.7	65%		4E+04	NA	7.1E+08			73694	70000	
cadmium	0.0008			100%		60%	0.000005	20%		4E+02	NA	1.2E+04			327	300	
chromium (VI)	0.001			100%		10%	0.0001	0%	9.5	5E+02	NA	2.9E+05			944	900	
cobalt	0.001	1	0.0014	100%	0.001	20%	0.0001	0%	1.2	2E+03	4.4E+04	4 2.9E+05			1144	1000	
copper	0.14			100%		60%	0.49	60%	5.9	9E+04	NA	5.6E+08			58955	59000	
manganese	0.16			100%		50%	0.00015	20%	8.4	4E+04	NA	3.5E+05			67723	68000	
methyl mercury	0.00023	1	0.00023	100%	0.001	80%	0.000805	80%	4.8	8E+01	1.8E+0	3 4.6E+05			47	47	
mercury (inorganic)	0.0006	0.07	0.000042	100%	0.001	40%	0.0002	10%	3.8	8E+02	9.8E+0	2 5.2E+05			273	300	
nickel	0.012	1	0.012	100%	0.005	60%	0.00002	20%			3.7E+04	4 4.6E+04			4060	4100	
selenium	0.006			100%		60%	0.021	60%	2.5	5E+03	NA	2.4E+07			2527	3000	
zinc	0.5	1	0.5	100%	0.001	80%	1.75	80%	1.1	1E+05	3.9E+0	6 1.0E+09			102510	100000	
cyanide (free) (no VI)	0.006	1	0.006	100%	0.1	50%	0.0008	0%	3.2	2E+03	1.2E+0	3 2.3E+06			853	850	
TCE							0.002	10%		NA	NA	NA	1.5E+00	1.5			
1,1,1-TCA							5	0%		NA	NA	NA	4.2E+03	4212			
PCE							0.2	10%		NA	NA	NA	1.5E+02	200			
cis-1,2-dichloroethene							0.007	0%		NA	NA	NA	5.9E+00	6			
phenol	0.7	1	0.7	100%	0.1	30%	0.035	30%		2E+05		5 7.1E+07			139161	140000	
pentachlorophenol	0.003	1	0.003	100%	0.24	0%	0.0105	0%	-			2 3.0E+07			422	420	
cresols	0.1	1	0.1	100%	0.1	50%	0.35	50%		3E+04		4 5.0E+08			14228	10000	
DDX	0.002	1	0.002	100%	0.018	0%	0.007	0%				3 2.0E+07			1417	1000	
aldrin and dieldrin	0.0001	1	0.0001	100%	0.1	10%	0.00035	10%				1 9.1E+05			25.6	10	
chlordane	0.0005	1	0.0005	100%	0.04	0%	0.00175	0%				2 5.0E+06			253	300	
endosulfan	0.006	1	0.006	100%	0.1	30%	0.021	30%				3 4.2E+07			1195	1200	
endrin	0.0002	1	0.0002	100%	0.1	0%	0.0007	0%		-		1 2.0E+06			57	60	<u> </u>
heptachlor	0.0001	1	0.0001	100%	0.1	0%	0.00035	0%				1 1.0E+06			28.5	10	4
HCB	0.00016	1	0.00016	100%	0.1	0%	0.00056	0%				1 1.6E+06			46	50	<u> </u>
methoxychlor	0.005	1	0.005	100%	0.1	0%	0.0175	0%				3 5.0E+07			1423	1000	
mirex	0.0002	1	0.0002	100%	0.1	0%	0.0007	0%				1 2.0E+06			57	60	
toxaphene	0.00035	1	0.00035	100%	0.1	10%	0.001225	10%				2 3.2E+06			90	90	───
2,4,5-T	0.01	1	0.01	100%	0.1	0%	0.035	0%				3 1.0E+08			2846	3000	I
2,4-D	0.01	1	0.01	100%	0.05	0%	0.035	0%				3 1.0E+08			4480	4500	
MCPA MCPB	0.01	1	0.01	100% 100%	0.1	0%	0.035	0%				3 1.0E+08 3 1.0E+08			2846 2846	3000 3000	<u> </u>
	0.01	1	0.01	100%	0.1	0%	0.035	0%		-					2846	3000	
mecoprop	0.01	1	0.01	100%	0.1	0%	0.035			-		3 1.0E+08 4 7.1E+08			19919	20000	<u> </u>
picloram	0.07	1	0.07	100%	0.1	0%	0.245	0%							19919	1000	<u> </u>
atrazine	0.005	1	0.005	100%	0.03	50%	0.0175	50%				3 5.0E+07 3 1.5E+07			873	870	
chlorpyrifos bifenthrin	0.003	1	0.003	100%	0.03	10%	0.0105	10%				3 1.5E+07 3 9.1E+07			2561	2600	<u> </u>
PCBs	0.0002	1	0.000	100%	0.1	0%	0.0007	0%				0 2.0E+07	-		4.4	2600	<u> </u>
PBDE Flame Retardants (Br1-Br9)	0.00002	1	0.00002	100%	0.14	80%	0.00007	80%				0 2.0E+05			5.7	6	<u> </u>
	0.0001	I	0.0001	100%	0.1	0070	0.00033	0070						sed (refer to Appendix		-	

NA Pathway not of significance for chemical assessed (refer to Appendix A for chemical-specific details)

Oral (TRVo) (mg/kg/day) ⁻¹ (GAF) (unitless)Dermal (SFd) (mg/kg/day) ⁻¹ BAo (%)Factor (DAF) (unitless)Value Inhalation (mg/m) ⁻¹ (TR)Soil Ingestion (eqns 4 and 5)Dermal (eqns 7 and 8)Dust (eqns 7 and 8)HIL (mg/m) ³ Threshold (to 1 or 2 s.f.) (mg/m)(mg/kg) (eqn 2 for relevant pathways)Complete (mg/m) (mg/m)Threshold (to 1 or 2 s.f.) (mg/m)(mg/kg) (eqn 2 for relevant pathways)Complete (mg/m) (mg/m)Complete (mg/m) (mg/m)HIL (mg/m)Threshold (to 1 or 2 s.f.) (mg/m)(mg/kg) (eqn 2 for relevant pathways)Complete (mg/m) (mg/m)Complete (mg/m)Complete (mg/	Non-Threshold Effects - Lifetime	Exposures [young	child and ad	ult]												
Oral (TRVo) (mg/kg/day)^1(GAF) (unitless)Dermal (SFd) (mg/kg/day)^1BAo (%)Factor (DAF) (unitless)Value Inhalation (TRV1) (mg/m)^1(TR)Soil Ingestion (eqns 4 and 5)Dermal (eqns 7 and 8)Dust (eqns 10 and 11)Threshold (to 1 or (mg/m3) (eqns 13 and 14)(mg/kg) (eqn 2 for relevant pathways)Constrained (mg/kg) (eqn 2 for relevant pathways)Constrained (eqns 13 and 14)TCE vinyl chloride benzo(a)pyrene0.00.0041E-05NANANA4.2E+0040.00.00.004TCE vinyl chloride benzo(a)pyrene0.510.514%0.0131.43E-011E-05NANANA1.9E+001.9E+001.73.92001		Toxicity	GI	Non-Threshold	Oral	Dermal	Toxicity	Target	Pathwa	y Specific	ecific HILs Soil		Derived Interim	Derived Soil HIL	Derived Soil HIL (to 1	Notes
(mg/kg/day)^{-1}(unitless)(mg/kg/day)^{-1}(unitless)(unitless)(unitless)(unitless)Inhalation (TRV1) (mg/m3)^{-1}Ingestion (eqns 4 and 5)(eqns 7 and 8)(eqns 10 and 11)(mg/m3) (eqns 13 and 14)2 s.f.) (mg/m3) (eqns 10 (eqns 13 and 14)2 s.f.) (mg/m3) (eqns 10 (eqns 10) (eqns 10 (eqns 10 (eqns 10) (eqns 10 (eqns 10 (eqns 10) (eqns 10 (eqns 10) (eqns 10 (eqns 10) (eqns 10 (eqns 10) (eqns 10 (eqns 10) (eqns 10 (eqns 10) (eqns 10) <b< th=""><th>Compound</th><th>Reference Value</th><th>Absorption</th><th>Slope Factor</th><th>Bioavailability</th><th>Absorption</th><th>Reference</th><th>Risk</th><th></th><th>(mg/kg)</th><th></th><th>Vapour</th><th>Soil Gas IL -</th><th>(not rounded)</th><th>or 2 s.f.) (mg/kg)</th><th></th></b<>	Compound	Reference Value	Absorption	Slope Factor	Bioavailability	Absorption	Reference	Risk		(mg/kg)		Vapour	Soil Gas IL -	(not rounded)	or 2 s.f.) (mg/kg)	
Image: series of the series		Oral (TRV ₀)	(GAF)	Dermal (SFd)	BA ₀ (%)	Factor (DAF)		(TR)	Soil							
Image: style		(mg/kg/day) ⁻¹	(unitless)	(mg/kg/day) ⁻¹		(unitless)			Ingestion	(eqns 7	(eqns 10	(mg/m ³)	2 s.f.) (mg/m3)	relevant pathways)		
TCE O							(TRV _I)		(eqns 4 and	and 8)	and 11)	(eqns 13 and				
vinyl chloride one							(mg/m ³) ⁻¹		5)			14)				
benzo(a)pyrene 0.5 1 0.5 14% 0.013 1.43E-01 1E-05 1.2E+03 2.0E+02 4.0E+05 173.9 200 1	TCE						0.004	1E-05	NA	NA	NA	4.2E+00	4			
	vinyl chloride						0.0088	1E-05	NA	NA	NA	1.9E+00	1.9			
benzo(a)pyrene (Early-Life) 0.5 1 0.5 14% 0.013 1.43E-01 1E-05 2.8E+02 7.4E+01 1.5E+05 58.8 60 1		0.5	1	0.5	14%									173.9	200	1
	benzo(a)pyrene (Early-Life)	0.5	1	0.5	14%	0.013	1.43E-01	1E-05	2.8E+02	7.4E+01	1.5E+05			58.8	60	1

NA Pathway not of significance for chemical assessed (refer to Appendix A for chemical-specific details)
 1 Refer to Appendix A for discussion on different calculations conducted for benzo(a)pyrene and basis for HIL adopted

